Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(2): 390-408.e23, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38157855

RESUMEN

We describe a human lung disease caused by autosomal recessive, complete deficiency of the monocyte chemokine receptor C-C motif chemokine receptor 2 (CCR2). Nine children from five independent kindreds have pulmonary alveolar proteinosis (PAP), progressive polycystic lung disease, and recurrent infections, including bacillus Calmette Guérin (BCG) disease. The CCR2 variants are homozygous in six patients and compound heterozygous in three, and all are loss-of-expression and loss-of-function. They abolish CCR2-agonist chemokine C-C motif ligand 2 (CCL-2)-stimulated Ca2+ signaling in and migration of monocytic cells. All patients have high blood CCL-2 levels, providing a diagnostic test for screening children with unexplained lung or mycobacterial disease. Blood myeloid and lymphoid subsets and interferon (IFN)-γ- and granulocyte-macrophage colony-stimulating factor (GM-CSF)-mediated immunity are unaffected. CCR2-deficient monocytes and alveolar macrophage-like cells have normal gene expression profiles and functions. By contrast, alveolar macrophage counts are about half. Human complete CCR2 deficiency is a genetic etiology of PAP, polycystic lung disease, and recurrent infections caused by impaired CCL2-dependent monocyte migration to the lungs and infected tissues.


Asunto(s)
Proteinosis Alveolar Pulmonar , Receptores CCR2 , Niño , Humanos , Pulmón/metabolismo , Macrófagos Alveolares/metabolismo , Proteinosis Alveolar Pulmonar/genética , Proteinosis Alveolar Pulmonar/diagnóstico , Receptores CCR2/deficiencia , Receptores CCR2/genética , Receptores CCR2/metabolismo , Reinfección/metabolismo
3.
Nat Immunol ; 25(1): 11-12, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38168956
4.
Klin Padiatr ; 236(2): 73-79, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38286410

RESUMEN

Pulmonary alveolar proteinosis (PAP) is an umbrella term used to refer to a pulmonary syndrome which is characterized by excessive accumulation of surfactant in the lungs of affected individuals. In general, PAP is a rare lung disease affecting children and adults, although its prevalence and incidence is variable among different countries. Even though PAP is a rare disease, it is a prime example on how modern medicine can lead to new therapeutic concepts, changing ways and techniques of (genetic) diagnosis which ultimately led into personalized treatments, all dedicated to improve the function of the impaired lung and thus life expectancy and quality of life in PAP patients. In fact, new technologies, such as new sequencing technologies, gene therapy approaches, new kind and sources of stem cells and completely new insights into the ontogeny of immune cells such as macrophages have increased our understanding in the onset and progression of PAP, which have paved the way for novel therapeutic concepts for PAP and beyond. As of today, classical monocyte-derived macrophages are known as important immune mediator and immune sentinels within the innate immunity. Furthermore, macrophages (known as tissue resident macrophages (TRMs)) can also be found in various tissues, introducing e. g. alveolar macrophages in the broncho-alveolar space as crucial cellular determinants in the onset of PAP and other lung disorders. Given recent insights into the onset of alveolar macrophages and knowledge about factors which impede their function, has led to the development of new therapies, which are applied in the context of PAP, with promising implications also for other diseases in which macrophages play an important role. Thus, we here summarize the latest insights into the various forms of PAP and introduce new pre-clinical work which is currently conducted in the framework of PAP, introducing new therapies for children and adults who still suffer from this severe, potentially life-threatening disease.


Asunto(s)
Proteinosis Alveolar Pulmonar , Adulto , Niño , Humanos , Proteinosis Alveolar Pulmonar/diagnóstico , Proteinosis Alveolar Pulmonar/genética , Proteinosis Alveolar Pulmonar/terapia , Calidad de Vida , Pulmón , Macrófagos Alveolares
5.
Int J Mol Sci ; 25(12)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38928073

RESUMEN

The Cystic Fibrosis Conductance Transmembrane Regulator gene encodes for the CFTR ion channel, which is responsible for the transport of chloride and bicarbonate across the plasma membrane. Mutations in the gene result in impaired ion transport, subsequently leading to perturbed secretion in all exocrine glands and, therefore, the multi-organ disease cystic fibrosis (CF). In recent years, several studies have reported on CFTR expression in immune cells as demonstrated by immunofluorescence, flow cytometry, and immunoblotting. However, these data are mainly restricted to single-cell populations and show significant variation depending on the methodology used. Here, we investigated CFTR transcription and protein expression using standardized protocols in a comprehensive panel of immune cells. Methods: We applied a high-resolution Western blot protocol using a combination of highly specific monoclonal CFTR antibodies that have been optimized for the detection of CFTR in epithelial cells and healthy primary immune cell subpopulations sorted by flow cytometry and used immortalized cell lines as controls. The specificity of CFTR protein detection was controlled by peptide competition and enzymatic Peptide-N-Glycosidase-F (PNGase) digest. CFTR transcripts were analyzed using quantitative real-time PCR and normalized to the level of epithelial T84 cells as a reference. Results: CFTR mRNA expression could be shown for primary CD4+ T cells, NK cells, as well as differentiated THP-1 and Jurkat T cells. In contrast, we failed to detect CFTR transcripts for CD14+ monocytes and undifferentiated THP-1 cells, as well as for B cells and CD8+ T cells. Prominent immunoreactive bands were detectable by immunoblotting with the combination of four CFTR antibodies targeting different epitopes of the CFTR protein. However, in biosamples of non-epithelial origin, these CFTR-like protein bands could be unmasked as false positives through peptide competition or PNGase digest, meaning that the observed mRNA transcripts were not necessarily translated into CFTR proteins, which could be detected via immunoblotting. Our results confirm that mRNA expression in immune cells is many times lower than in that cells of epithelial origin. The immunoreactive signals in immune cells turned out to be false positives, and may be provoked by the presence of a high-affinity protein with a similar epitope. Non-specific binding (e.g., Fab-interaction with glycosyl branches) might also contribute to false positive signals. Our findings highlight the necessity of accurate controls, such as CFTR-negative cells, as well as peptide competition and glycolytic digest in order to identify genuine CFTR protein by immunoblotting. Our data suggest, furthermore, that CFTR protein expression data from techniques such as histology, for which the absence of a molecular weight or other independent control prevents the unmasking of false positive immunoreactive signals, must be interpreted carefully as well.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Leucocitos Mononucleares , ARN Mensajero , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Leucocitos Mononucleares/metabolismo , Western Blotting , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Fibrosis Quística/metabolismo , Fibrosis Quística/genética , Células Asesinas Naturales/metabolismo , Citometría de Flujo/métodos , Linfocitos T CD4-Positivos/metabolismo
6.
Int J Mol Sci ; 25(2)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38256061

RESUMEN

The CRISPR-Cas12a platform has attracted interest in the genome editing community because the prototypical Acidaminococcus Cas12a generates a staggered DNA double-strand break upon binding to an AT-rich protospacer-adjacent motif (PAM, 5'-TTTV). The broad application of the platform in primary human cells was enabled by the development of an engineered version of the natural Cas12a protein, called Cas12a Ultra. In this study, we confirmed that CRISPR-Cas12a Ultra ribonucleoprotein complexes enabled allelic gene disruption frequencies of over 90% at multiple target sites in human T cells, hematopoietic stem and progenitor cells (HSPCs), and induced pluripotent stem cells (iPSCs). In addition, we demonstrated, for the first time, the efficient knock-in potential of the platform in human iPSCs and achieved targeted integration of a GFP marker gene into the AAVS1 safe harbor site and a CSF2RA super-exon into CSF2RA in up to 90% of alleles without selection. Clonal analysis revealed bi-allelic integration in >50% of the screened iPSC clones without compromising their pluripotency and genomic integrity. Thus, in combination with the adeno-associated virus vector system, CRISPR-Cas12a Ultra provides a highly efficient genome editing platform for performing targeted knock-ins in human iPSCs.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Humanos , Sistemas CRISPR-Cas , Células Madre Hematopoyéticas , Alelos
7.
Mol Ther ; 29(3): 1324-1334, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33279724

RESUMEN

Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which lead to impaired ion transport in epithelial cells. Although lung failure due to chronic infection is the major comorbidity in individuals with cystic fibrosis, the role of CFTR in non-epithelial cells has not been definitively resolved. Given the important role of host defense cells, we evaluated the Cftr deficiency in pulmonary immune cells by hematopoietic stem cell transplantation in cystic fibrosis mice. We transplanted healthy bone marrow stem cells and could reveal a stable chimerism of wild-type cells in peripheral blood. The outcome of stem cell transplantation and the impact of healthy immune cells were evaluated in acute Pseudomonas aeruginosa airway infection. In this study, mice transplanted with wild-type cells displayed better survival, lower lung bacterial numbers, and a milder disease course. This improved physiology of infected mice correlated with successful intrapulmonary engraftment of graft-derived alveolar macrophages, as seen by immunofluorescence microscopy and flow cytometry of graft-specific leucocyte surface marker CD45 and macrophage marker CD68. Given the beneficial effect of hematopoietic stem cell transplantation and stable engraftment of monocyte-derived CD68-positive macrophages, we conclude that replacement of mutant Cftr macrophages attenuates airway infection in cystic fibrosis mice.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/terapia , Trasplante de Células Madre Hematopoyéticas/métodos , Macrófagos/inmunología , Mutación , Infecciones por Pseudomonas/terapia , Pseudomonas aeruginosa/aislamiento & purificación , Animales , Fibrosis Quística/genética , Fibrosis Quística/microbiología , Células Epiteliales/microbiología , Humanos , Pulmón/microbiología , Macrófagos/microbiología , Ratones , Infecciones por Pseudomonas/complicaciones , Infecciones por Pseudomonas/microbiología
8.
Gene Ther ; 28(9): 477-493, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34276045

RESUMEN

Inherited deficiency of the antiprotease alpha-1 antitrypsin (AAT) is associated with liver failure and early-onset emphysema. In mice, in vivo lentiviral transduction of alveolar macrophages (AMs) has been described to yield protective pulmonary AAT levels and ameliorate emphysema development. We here investigated the pulmonary transplantation of macrophages (PMT) transgenic for AAT as a potential therapy for AAT deficiency-associated lung pathology. Employing third-generation SIN-lentiviral vectors expressing the human AAT cDNA from the CAG or Cbx-EF1α promoter, we obtained high-level AAT secretion in a murine AM cell line as well as murine bone marrow-derived macrophages differentiated in vitro (AAT MΦ). Secreted AAT demonstrated a physiologic glycosylation pattern as well as elastase-inhibitory and anti-apoptotic properties. AAT MΦ preserved normal morphology, surface phenotype, and functionality. Furthermore, in vitro generated murine AAT MΦ successfully engrafted in AM-deficient Csf2rb-/- mice and converted into a CD11c+/Siglec-F+ AM phenotype as detected in bronchoalveolar lavage fluid and homogenized lung tissue 2 months after PMT. Moreover, human AAT was detected in the lung epithelial lining fluid of transplanted animals. Efficient AAT expression and secretion were also demonstrated for human AAT MΦ, confirming the applicability of our vectors in human cells.


Asunto(s)
Enfisema Pulmonar , Deficiencia de alfa 1-Antitripsina , Animales , Animales Modificados Genéticamente , Humanos , Pulmón , Macrófagos , Ratones , Deficiencia de alfa 1-Antitripsina/genética , Deficiencia de alfa 1-Antitripsina/terapia
9.
Haematologica ; 106(5): 1354-1367, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32327499

RESUMEN

Hematopoietic development is spatiotemporally tightly regulated by defined cell-intrinsic and extrinsic modifiers. The role of cytokines has been intensively studied in adult hematopoiesis; however, their role in embryonic hematopoietic specification remains largely unexplored. Here, we used induced pluripotent stem cell (iPSC) technology and established a 3-dimensional, organoid-like differentiation system (hemanoid) maintaining the structural cellular integrity to evaluate the effect of cytokines on embryonic hematopoietic development. We show, that defined stages of early human hematopoietic development were recapitulated within the generated hemanoids. We identified KDR+/CD34high/CD144+/CD43-/CD45- hemato-endothelial progenitor cells (HEPs) forming organized, vasculature-like structures and giving rise to CD34low/CD144-/CD43+/CD45+ hematopoietic progenitor cells. We demonstrate that the endothelial to hematopoietic transition of HEPs is dependent on the presence of interleukin 3 (IL-3). Inhibition of IL-3 signalling blocked hematopoietic differentiation and arrested the cells in the HEP stage. Thus, our data suggest an important role for IL-3 in early human hematopoiesis by supporting the endothelial to hematopoietic transition of hemato-endothelial progenitor cells and highlight the potential of a hemanoid-based model to study human hematopoietic development.


Asunto(s)
Células Madre Pluripotentes Inducidas , Interleucina-3 , Células Madre Pluripotentes , Adulto , Diferenciación Celular , Hematopoyesis , Humanos
10.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33804918

RESUMEN

Macrophages act as immune scavengers and are important cell types in the homeostasis of various tissues. Given the multiple roles of macrophages, these cells can also be found as tissue resident macrophages tightly integrated into a variety of tissues in which they fulfill crucial and organ-specific functions. The lung harbors at least two macrophage populations: interstitial and alveolar macrophages, which occupy different niches and functions. In this review, we provide the latest insights into the multiple roles of alveolar macrophages while unraveling the distinct factors which can influence the ontogeny and function of these cells. Furthermore, we will highlight pulmonary diseases, which are associated with dysfunctional macrophages, concentrating on congenital diseases as well as pulmonary infections and impairment of immunological pathways. Moreover, we will provide an overview about different treatment approaches targeting macrophage dysfunction. Improved knowledge of the role of macrophages in the onset of pulmonary diseases may provide the basis for new pharmacological and/or cell-based immunotherapies and will extend our understanding to other macrophage-related disorders.


Asunto(s)
Macrófagos Alveolares/metabolismo , Proteinosis Alveolar Pulmonar/metabolismo , Animales , Homeostasis , Humanos , Proteinosis Alveolar Pulmonar/patología , Surfactantes Pulmonares/metabolismo
11.
Gene Ther ; 27(6): 297-306, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32051561

RESUMEN

Induced pluripotent stem cells (iPSCs) from patients with genetic disorders are a valuable source for in vitro disease models, which enable drug testing and validation of gene and cell therapies. We generated iPSCs from a severe congenital neutropenia (SCN) patient, who presented with a nonsense mutation in the glucose-6-phosphatase catalytic subunit 3 (G6PC3) gene causing profound defects in granulopoiesis, associated with increased susceptibility of neutrophils to apoptosis. Generated SCN iPSC clones exhibited the capacity to differentiate into hematopoietic cells of the myeloid lineage and we identified two cytokine conditions, i.e., using granulocyte-colony stimulating factor or granulocyte-macrophage colony stimulating factor in combination with interleukin-3, to model the SCN phenotype in vitro. Reduced numbers of granulocytes were produced by SCN iPSCs compared with control iPSCs in both settings, which reflected the phenotype in patients. Interestingly, our model showed increased monocyte/macrophage production from the SCN iPSCs. Most importantly, lentiviral genetic correction of SCN iPSCs with a codon-optimized G6PC3 transgene restored granulopoiesis and reduced apoptosis of in vitro differentiated myeloid cells. Moreover, addition of vitamin B3 clearly induced granulocytic differentiation of SCN iPSCs and increased the number of neutrophils to levels comparable with those obtained from healthy control iPSCs. In summary, we established an iPSC-derived in vitro disease model, which will serve as a tool to test the potency of alternative treatment options for SCN patients, such as small molecules and gene therapeutic vectors.


Asunto(s)
Células Madre Pluripotentes Inducidas , Diferenciación Celular , Terapia Genética , Glucosa-6-Fosfatasa , Factor Estimulante de Colonias de Granulocitos , Humanos , Niacinamida
12.
Blood ; 131(5): 533-545, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29233822

RESUMEN

Mendelian susceptibility to mycobacterial disease is a rare primary immunodeficiency characterized by severe infections caused by weakly virulent mycobacteria. Biallelic null mutations in genes encoding interferon gamma receptor 1 or 2 (IFNGR1 or IFNGR2) result in a life-threatening disease phenotype in early childhood. Recombinant interferon γ (IFN-γ) therapy is inefficient, and hematopoietic stem cell transplantation has a poor prognosis. Thus, we developed a hematopoietic stem cell (HSC) gene therapy approach using lentiviral vectors that express Ifnγr1 either constitutively or myeloid specifically. Transduction of mouse Ifnγr1-/- HSCs led to stable IFNγR1 expression on macrophages, which rescued their cellular responses to IFN-γ. As a consequence, genetically corrected HSC-derived macrophages were able to suppress T-cell activation and showed restored antimycobacterial activity against Mycobacterium avium and Mycobacterium bovis Bacille Calmette-Guérin (BCG) in vitro. Transplantation of genetically corrected HSCs into Ifnγr1-/- mice before BCG infection prevented manifestations of severe BCG disease and maintained lung and spleen organ integrity, which was accompanied by a reduced mycobacterial burden in lung and spleen and a prolonged overall survival in animals that received a transplant. In summary, we demonstrate an HSC-based gene therapy approach for IFNγR1 deficiency, which protects mice from severe mycobacterial infections, thereby laying the foundation for a new therapeutic intervention in corresponding human patients.


Asunto(s)
Terapia Genética , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/metabolismo , Infecciones por Mycobacterium/prevención & control , Sustancias Protectoras , Receptores de Interferón/genética , Animales , Células Cultivadas , Trasplante de Células Madre Hematopoyéticas/métodos , Síndromes de Inmunodeficiencia/genética , Síndromes de Inmunodeficiencia/terapia , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mycobacterium avium , Sustancias Protectoras/metabolismo , Sustancias Protectoras/uso terapéutico , Células RAW 264.7 , Receptor de Interferón gamma
13.
Haematologica ; 105(4): 1147-1157, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31289207

RESUMEN

Hereditary pulmonary alveolar proteinosis due to GM-CSF receptor deficiency (herPAP) constitutes a life-threatening lung disease characterized by alveolar deposition of surfactant protein secondary to defective alveolar macrophage function. As current therapeutic options are primarily symptomatic, we have explored the potential of hematopoietic stem cell-based gene therapy. Using Csf2rb-/- mice, a model closely reflecting the human herPAP disease phenotype, we here demonstrate robust pulmonary engraftment of an alveolar macrophage population following intravenous transplantation of lentivirally corrected hematopoietic stem and progenitor cells. Engraftment was associated with marked improvement of critical herPAP disease parameters, including bronchoalveolar fluid protein, cholesterol and cytokine levels, pulmonary density on computed tomography scans, pulmonary deposition of Periodic Acid-Schiff+ material as well as respiratory mechanics. These effects were stable for at least nine months. With respect to engraftment and alveolar macrophage differentiation kinetics, we demonstrate the rapid development of CD11c+/SiglecF+ cells in the lungs from a CD11c-/SiglecF+ progenitor population within four weeks after transplantation. Based on these data, we suggest hematopoietic stem cell-based gene therapy as an effective and cause-directed treatment approach for herPAP.


Asunto(s)
Proteinosis Alveolar Pulmonar , Animales , Modelos Animales de Enfermedad , Terapia Genética , Células Madre Hematopoyéticas , Macrófagos Alveolares , Ratones , Proteinosis Alveolar Pulmonar/genética , Proteinosis Alveolar Pulmonar/terapia
14.
Nature ; 514(7523): 450-4, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25274301

RESUMEN

Bone-marrow transplantation is an effective cell therapy but requires myeloablation, which increases infection risk and mortality. Recent lineage-tracing studies documenting that resident macrophage populations self-maintain independently of haematological progenitors prompted us to consider organ-targeted, cell-specific therapy. Here, using granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor-ß-deficient (Csf2rb(-/-)) mice that develop a myeloid cell disorder identical to hereditary pulmonary alveolar proteinosis (hPAP) in children with CSF2RA or CSF2RB mutations, we show that pulmonary macrophage transplantation (PMT) of either wild-type or Csf2rb-gene-corrected macrophages without myeloablation was safe and well-tolerated and that one administration corrected the lung disease, secondary systemic manifestations and normalized disease-related biomarkers, and prevented disease-specific mortality. PMT-derived alveolar macrophages persisted for at least one year as did therapeutic effects. Our findings identify mechanisms regulating alveolar macrophage population size in health and disease, indicate that GM-CSF is required for phenotypic determination of alveolar macrophages, and support translation of PMT as the first specific therapy for children with hPAP.


Asunto(s)
Trasplante de Células , Subunidad beta Común de los Receptores de Citocinas/genética , Terapia Genética , Pulmón/citología , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/trasplante , Proteinosis Alveolar Pulmonar/terapia , Animales , Separación Celular , Subunidad beta Común de los Receptores de Citocinas/deficiencia , Femenino , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Proteinosis Alveolar Pulmonar/genética , Proteinosis Alveolar Pulmonar/patología , Factores de Tiempo
15.
Mol Ther ; 27(9): 1597-1611, 2019 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-31326401

RESUMEN

Hereditary pulmonary alveolar proteinosis (PAP) is a genetic lung disease characterized by surfactant accumulation and respiratory failure arising from disruption of GM-CSF signaling. While mutations in either CSF2RA or CSF2RB (encoding GM-CSF receptor α or ß chains, respectively) can cause PAP, α chain mutations are responsible in most patients. Pulmonary macrophage transplantation (PMT) is a promising new cell therapy in development; however, no studies have evaluated this approach for hereditary PAP (hPAP) caused by Csf2ra mutations. Here, we report on the preclinical safety, tolerability, and efficacy of lentiviral-vector (LV)-mediated Csf2ra expression in macrophages and PMT of gene-corrected macrophages (gene-PMT therapy) in Csf2ra gene-ablated (Csf2ra-/-) mice. Gene-PMT therapy resulted in a stable transgene integration and correction of GM-CSF signaling and functions in Csf2ra-/- macrophages in vitro and in vivo and resulted in engraftment and long-term persistence of gene-corrected macrophages in alveoli; restoration of pulmonary surfactant homeostasis; correction of PAP-specific cytologic, histologic, and biomarker abnormalities; and reduced inflammation associated with disease progression in untreated mice. No adverse consequences of gene-PMT therapy in Csf2ra-/- mice were observed. Results demonstrate that gene-PMT therapy of hPAP in Csf2ra-/- mice was highly efficacious, durable, safe, and well tolerated.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Terapia Genética , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/trasplante , Proteinosis Alveolar Pulmonar/genética , Proteinosis Alveolar Pulmonar/terapia , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Animales , Proliferación Celular , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Modelos Animales de Enfermedad , Expresión Génica , Terapia Genética/métodos , Vectores Genéticos/genética , Inmunofenotipificación , Lentivirus/genética , Ratones , Ratones Noqueados , Proteinosis Alveolar Pulmonar/diagnóstico , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Transducción de Señal , Transducción Genética
16.
Transfus Med Hemother ; 47(6): 444-453, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33442339

RESUMEN

Antigen-presenting cells (APCs), such as dendritic cells (DCs) and macrophages, are important regulators of the immune system, as they connect the innate and adaptive immunity by critically regulating T-cell responses. Thus, APCs are involved in both tissue homeostasis and tolerance, but also coordinate immune responses in case of infection and inflammation. Primary APCs are commonly generated from peripheral blood-derived monocytes and have been used as cell therapeutics in several (pre-)clinical settings, e.g., immune oncology, however, with varying efficiency. One promising alternative to study antigen presentation in vitro and to develop novel cell-based therapies are induced pluripotent stem cells (iPSCs). IPSCs can nowadays be generated from a variety of different cell types using several refined reprogramming techniques. Given their unlimited proliferation and differentiation potential, they hold great promise for regenerative medicine, and recently, first iPSC derivatives have found their way into first clinical studies for cell-based therapies. In this review article, we will give a brief overview of current methods for the generation and applications of primary APCs, but also specifically focus on different strategies for the generation of defined subsets of DCs and macrophages from human PSCs. Moreover, we will highlight the potential but also hurdles for the clinical translation of iPSC-derived APCs.

17.
Int J Mol Sci ; 21(7)2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32260086

RESUMEN

Induced pluripotent stem cells (iPSCs) offer great promise for the field of regenerative medicine, and iPSC-derived cells have already been applied in clinical practice. However, potential contamination of effector cells with residual pluripotent cells (e.g., teratoma-initiating cells) or effector cell-associated side effects may limit this approach. This also holds true for iPSC-derived hematopoietic cells. Given the therapeutic benefit of macrophages in different disease entities and the feasibility to derive macrophages from human iPSCs, we established human iPSCs harboring the inducible Caspase-9 (iCasp9) suicide safety switch utilizing transcription activator-like effector nuclease (TALEN)-based designer nuclease technology. Mono- or bi-allelic integration of the iCasp9 gene cassette into the AAVS1 locus showed no effect on the pluripotency of human iPSCs and did not interfere with their differentiation towards macrophages. In both, iCasp9-mono and iCasp9-bi-allelic clones, concentrations of 0.1 nM AP20187 were sufficient to induce apoptosis in more than 98% of iPSCs and their progeny-macrophages. Thus, here we provide evidence that the introduction of the iCasp9 suicide gene into the AAVS1 locus enables the effective clearance of human iPSCs and thereof derived macrophages.


Asunto(s)
Caspasa 9/genética , Células Madre Pluripotentes Inducidas/citología , Macrófagos/citología , Caspasa 9/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular , Genes Transgénicos Suicidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Macrófagos/metabolismo , Medicina Regenerativa , Tacrolimus/análogos & derivados , Tacrolimus/farmacología
18.
Am J Respir Crit Care Med ; 198(3): 350-360, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29652170

RESUMEN

RATIONALE: Although the transplantation of induced pluripotent stem cell (iPSC)-derived cells harbors enormous potential for the treatment of pulmonary diseases, in vivo data demonstrating clear therapeutic benefits of human iPSC-derived cells in lung disease models are missing. OBJECTIVES: We have tested the therapeutic potential of iPSC-derived macrophages in a humanized disease model of hereditary pulmonary alveolar proteinosis (PAP). Hereditary PAP is caused by a genetic defect of the GM-CSF (granulocyte-macrophage colony-stimulating factor) receptor, which leads to disturbed macrophage differentiation and protein/surfactant degradation in the lungs, subsequently resulting in severe respiratory insufficiency. METHODS: Macrophages derived from human iPSCs underwent intrapulmonary transplantation into humanized PAP mice, and engraftment, in vivo differentiation, and therapeutic efficacy of the transplanted cells were analyzed. MEASUREMENTS AND MAIN RESULTS: On intratracheal application, iPSC-derived macrophages engrafted in the lungs of humanized PAP mice. After 2 months, transplanted cells displayed the typical morphology, surface markers, functionality, and transcription profile of primary human alveolar macrophages. Alveolar proteinosis was significantly reduced as demonstrated by diminished protein content and surfactant protein D levels, decreased turbidity of the BAL fluid, and reduced surfactant deposition in the lungs of transplanted mice. CONCLUSIONS: We here demonstrate for the first time that pulmonary transplantation of human iPSC-derived macrophages leads to pulmonary engraftment, their in situ differentiation to an alveolar macrophage phenotype, and a reduction of alveolar proteinosis in a humanized PAP model. To our knowledge, this finding presents the first proof-of-concept for the therapeutic potential of human iPSC-derived cells in a pulmonary disease and may have profound implications beyond the rare disease of PAP.


Asunto(s)
Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/trasplante , Macrófagos Alveolares/metabolismo , Proteinosis Alveolar Pulmonar/metabolismo , Proteinosis Alveolar Pulmonar/terapia , Animales , Humanos , Ratones , Reacción en Cadena de la Polimerasa
20.
Circulation ; 134(24): 1973-1990, 2016 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-27780851

RESUMEN

BACKGROUND: The transcription factor GATA2 orchestrates the expression of many endothelial-specific genes, illustrating its crucial importance for endothelial cell function. The capacity of this transcription factor in orchestrating endothelial-important microRNAs (miRNAs/miR) is unknown. METHODS: Endothelial GATA2 was functionally analyzed in human endothelial cells in vitro. Endogenous short interfering RNA-mediated knockdown and lentiviral-based overexpression were applied to decipher the capacity of GATA2 in regulating cell viability and capillary formation. Next, the GATA2-dependent miR transcriptome was identified by using a profiling approach on the basis of quantitative real-time polymerase chain reaction. Transcriptional control of miR promoters was assessed via chromatin immunoprecipitation, luciferase promoter assays, and bisulfite sequencing analysis of sites in proximity. Selected miRs were modulated in combination with GATA2 to identify signaling pathways at the angiogenic cytokine level via proteome profiler and enzyme-linked immunosorbent assays. Downstream miR targets were identified via bioinformatic target prediction and luciferase reporter gene assays. In vitro findings were translated to a mouse model of carotid injury in an endothelial GATA2 knockout background. Nanoparticle-mediated delivery of proangiogenic miR-126 was tested in the reendothelialization model. RESULTS: GATA2 gain- and loss-of-function experiments in human umbilical vein endothelial cells identified a key role of GATA2 as master regulator of multiple endothelial functions via miRNA-dependent mechanisms. Global miRNAnome-screening identified several GATA2-regulated miRNAs including miR-126 and miR-221. Specifically, proangiogenic miR-126 was regulated by GATA2 transcriptionally and targeted antiangiogenic SPRED1 and FOXO3a contributing to GATA2-mediated formation of normal vascular structures, whereas GATA2 deficiency led to vascular abnormalities. In contrast to GATA2 deficiency, supplementation with miR-126 normalized vascular function and expression profiles of cytokines contributing to proangiogenic paracrine effects. GATA2 silencing resulted in endothelial DNA hypomethylation leading to induced expression of antiangiogenic miR-221 by GATA2-dependent demethylation of a putative CpG island in the miR-221 promoter. Mechanistically, a reverted GATA2 phenotype by endogenous suppression of miR-221 was mediated through direct proangiogenic miR-221 target genes ICAM1 and ETS1. In a mouse model of carotid injury, GATA2 was reduced, and systemic supplementation of miR-126-coupled nanoparticles enhanced miR-126 availability in the carotid artery and improved reendothelialization of injured carotid arteries in vivo. CONCLUSIONS: GATA2-mediated regulation of miR-126 and miR-221 has an important impact on endothelial biology. Hence, modulation of GATA2 and its targets miR-126 and miR-221 is a promising therapeutic strategy for treatment of many vascular diseases.


Asunto(s)
Enfermedades de las Arterias Carótidas/terapia , Factor de Transcripción GATA2/metabolismo , MicroARNs/uso terapéutico , Regiones no Traducidas 3' , Proteínas Adaptadoras Transductoras de Señales , Animales , Antagomirs/metabolismo , Secuencia de Bases , Enfermedades de las Arterias Carótidas/patología , Modelos Animales de Enfermedad , Proteína Forkhead Box O3/antagonistas & inhibidores , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Factor de Transcripción GATA2/antagonistas & inhibidores , Factor de Transcripción GATA2/genética , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Molécula 1 de Adhesión Intercelular/química , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lentivirus/genética , Masculino , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/antagonistas & inhibidores , MicroARNs/metabolismo , Nanopartículas/química , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA