Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
BMC Cancer ; 24(1): 84, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38225551

RESUMEN

BACKGROUND: Testicular germ cell tumours (TGCTs) are the most common malignancy in men aged 15-40 years, with increasing incidence worldwide. About 33 ~ 50% of the patients present with metastatic disease at diagnosis. TGCT survivors experience short- and long-term sequelae, including cancer-related fatigue (CRF). Physical activity (PA) has established effects on reducing CRF and other sequelae and improving health-related quality of life (HRQoL). However, its impact on TGCT survivors has so far received little attention. The gut microbiota plays a crucial role in various physiological functions, including cognition and metabolism, and may mediate the effects of PA on CRF and other sequelae, but this has not been investigated in randomized controlled trials. METHODS: This national, multicentre, phase-III trial will evaluate the impact of a one-year supervised PA program on CRF and other short- and long-term sequelae in metastatic TGCT patients receiving cisplatin-based chemotherapy combined with etoposide+/-bleomycin. It will also investigate potential mediating effects of the gut microbiota and its metabolites involved in the gut-brain axis on the relationship between PA and CRF and other sequelae. A total of 236 men ≥ 18 years of age with metastatic TGCT (seminoma and non-seminoma) will be enrolled before starting first-line chemotherapy in several French hospitals. The primary (CRF) and secondary (cognitive/psychological/metabolic sequelae, HRQoL, etc.) outcomes and gut microbiota and relevant metabolites will be assessed at inclusion, during and at the end of the one-year intervention, and annually until 10 years since inclusion to assess long-term sequelae, more specifically CRF, cardiovascular toxicities, and second primary cancer occurrence in this population. DISCUSSION: This trial will provide comprehensive and novel insights into the effects of a long-term supervised PA program on CRF and other sequelae in metastatic TGCT patients receiving first-line chemotherapy. It will also contribute to understanding the potential role of the gut microbiota and its metabolites in mediating the effects of PA on these outcomes. The findings of this study will help the development of effective PA interventions to improve the health of TGCT survivors and may have implications for other cancer populations as well. TRIAL REGISTRATION: The study was registered on ClinicalTrials.gov (NCT05588700) on 20 Oct. 2022.


Asunto(s)
Supervivientes de Cáncer , Microbioma Gastrointestinal , Neoplasias de Células Germinales y Embrionarias , Neoplasias Primarias Secundarias , Neoplasias Testiculares , Masculino , Humanos , Adolescente , Neoplasias Testiculares/complicaciones , Neoplasias Testiculares/terapia , Neoplasias Primarias Secundarias/complicaciones , Calidad de Vida , Estudios Prospectivos , Ejercicio Físico , Fatiga/etiología , Neoplasias de Células Germinales y Embrionarias/complicaciones , Ensayos Clínicos Controlados Aleatorios como Asunto , Estudios Multicéntricos como Asunto , Ensayos Clínicos Fase III como Asunto
2.
Neuropsychopharmacology ; 49(7): 1129-1139, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38326457

RESUMEN

Treatments are only partially effective in major depressive disorders (MDD) but no biomarker exists to predict symptom improvement in patients. Animal models are essential tools in the development of antidepressant medications, but while recent genetic studies have demonstrated the polygenic contribution to MDD, current models are limited to either mimic the effect of a single gene or environmental factor. We developed in the past a model of depressive-like behaviors in mice (H/Rouen), using selective breeding based on behavioral reaction after an acute mild stress in the tail suspension test. Here, we propose a new mouse model of depression (H-TST) generated from a more complex genetic background and based on the same selection process. We first demonstrated that H/Rouen and H-TST mice had similar phenotypes and were more sensitive to glutamate-related antidepressant medications than selective serotonin reuptake inhibitors. We then conducted an exome sequencing on the two mouse models and showed that they had damaging variants in 174 identical genes, which have also been associated with MDD in humans. Among these genes, we showed a higher expression level of Tmem161b in brain and blood of our two mouse models. Changes in TMEM161B expression level was also observed in blood of MDD patients when compared with controls, and after 8-week treatment with duloxetine, mainly in good responders to treatment. Altogether, our results introduce H/Rouen and H-TST as the two first polygenic animal models of MDD and demonstrate their ability to identify biomarkers of the disease and to develop rapid and effective antidepressant medications.


Asunto(s)
Antidepresivos , Biomarcadores , Trastorno Depresivo Mayor , Modelos Animales de Enfermedad , Herencia Multifactorial , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/tratamiento farmacológico , Animales , Humanos , Ratones , Masculino , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Biomarcadores/sangre , Femenino , Adulto , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Persona de Mediana Edad , Encéfalo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA