Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nat Methods ; 19(4): 418-428, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35396481

RESUMEN

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is one of the deadliest pandemics in history. SARS-CoV-2 not only infects the respiratory tract, but also causes damage to many organs. Organoids, which can self-renew and recapitulate the various physiology of different organs, serve as powerful platforms to model COVID-19. In this Perspective, we overview the current effort to apply both human pluripotent stem cell-derived organoids and adult organoids to study SARS-CoV-2 tropism, host response and immune cell-mediated host damage, and perform drug discovery and vaccine development. We summarize the technologies used in organoid-based COVID-19 research, discuss the remaining challenges and provide future perspectives in the application of organoid models to study SARS-CoV-2 and future emerging viruses.


Asunto(s)
COVID-19 , Células Madre Pluripotentes , Adulto , Humanos , Organoides , Pandemias , SARS-CoV-2
2.
Circ Res ; 130(7): 963-977, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35255712

RESUMEN

BACKGROUND: Increasing evidence suggests that cardiac arrhythmias are frequent clinical features of coronavirus disease 2019 (COVID-19). Sinus node damage may lead to bradycardia. However, it is challenging to explore human sinoatrial node (SAN) pathophysiology due to difficulty in isolating and culturing human SAN cells. Embryonic stem cells (ESCs) can be a source to derive human SAN-like pacemaker cells for disease modeling. METHODS: We used both a hamster model and human ESC (hESC)-derived SAN-like pacemaker cells to explore the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on the pacemaker cells of the heart. In the hamster model, quantitative real-time polymerase chain reaction and immunostaining were used to detect viral RNA and protein, respectively. We then created a dual knock-in SHOX2:GFP;MYH6:mCherry hESC reporter line to establish a highly efficient strategy to derive functional human SAN-like pacemaker cells, which was further characterized by single-cell RNA sequencing. Following exposure to SARS-CoV-2, quantitative real-time polymerase chain reaction, immunostaining, and RNA sequencing were used to confirm infection and determine the host response of hESC-SAN-like pacemaker cells. Finally, a high content chemical screen was performed to identify drugs that can inhibit SARS-CoV-2 infection, and block SARS-CoV-2-induced ferroptosis. RESULTS: Viral RNA and spike protein were detected in SAN cells in the hearts of infected hamsters. We established an efficient strategy to derive from hESCs functional human SAN-like pacemaker cells, which express pacemaker markers and display SAN-like action potentials. Furthermore, SARS-CoV-2 infection causes dysfunction of human SAN-like pacemaker cells and induces ferroptosis. Two drug candidates, deferoxamine and imatinib, were identified from the high content screen, able to block SARS-CoV-2 infection and infection-associated ferroptosis. CONCLUSIONS: Using a hamster model, we showed that primary pacemaker cells in the heart can be infected by SARS-CoV-2. Infection of hESC-derived functional SAN-like pacemaker cells demonstrates ferroptosis as a potential mechanism for causing cardiac arrhythmias in patients with COVID-19. Finally, we identified candidate drugs that can protect the SAN cells from SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Ferroptosis , Humanos , Miocitos Cardíacos/metabolismo , SARS-CoV-2 , Nodo Sinoatrial/metabolismo
3.
Dev Biol ; 449(1): 21-34, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30771304

RESUMEN

A functional placenta develops through a delicate interplay of its vascular and trophoblast compartments. We have identified a previously unknown expression domain for the endothelial-specific microRNA miR-126 in trophoblasts of murine and human placentas. Here, we determine the role of miR-126 in placental development using a mouse model with a targeted deletion of miR-126. In addition to vascular defects observed only in the embryo, loss of miR-126 function in the placenta leads to junctional zone hyperplasia at E15.5 at the expense of the labyrinth, reduced placental volume for nutrient exchange and intra-uterine growth restriction of the embryos. Junctional zone hyperplasia results from increased numbers of proliferating glycogen trophoblast (GlyT) progenitors at E13.5 that give rise to an expanded glycogen trophoblast population at E15.5. Transcriptomic profile of miR-126-/- placentas revealed dysregulation of a large number of GlyT (Prl6a1, Prl7c1, Pcdh12) and trophoblast-specific genes (Tpbpa, Tpbpb, Prld1) and genes with known roles in placental development. We show that miR-126-/- placentas, but not miR-126-/- embryos, display aberrant expression of imprinted genes with important roles in glycogen trophoblasts and junctional zone development, including Igf2, H19, Cdkn1c and Phlda2, during mid-gestation. We also show that miR126-/- placentas display global hypermethylation, including at several imprint control centers. Our findings uncover a novel role for miR-126 in regulating extra-embryonic energy stores, expression of imprinted genes and DNA methylation in the placenta.


Asunto(s)
Metilación de ADN/genética , Glucógeno/metabolismo , MicroARNs/metabolismo , Placenta/metabolismo , Trofoblastos/citología , Trofoblastos/metabolismo , Animales , Proliferación Celular , Embrión de Mamíferos/metabolismo , Células Endoteliales/metabolismo , Femenino , Retardo del Crecimiento Fetal/genética , Regulación del Desarrollo de la Expresión Génica , Impresión Genómica , Humanos , Hiperplasia , Ratones Endogámicos C57BL , MicroARNs/genética , Embarazo , Transcriptoma/genética
4.
Development ; 144(13): 2469-2479, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28526753

RESUMEN

EGFL7 is a secreted angiogenic factor produced by embryonic endothelial cells. To understand its role in placental development, we established a novel Egfl7 knockout mouse. The mutant mice have gross defects in chorioallantoic branching morphogenesis and placental vascular patterning. Microangiography and 3D imaging revealed patchy perfusion of Egfl7-/- placentas marked by impeded blood conductance through sites of narrowed vessels. Consistent with poor feto-placental perfusion, Egfl7 knockout resulted in reduced placental weight and fetal growth restriction. The placentas also showed abnormal fetal vessel patterning and over 50% reduction in fetal blood space. In vitro, placental endothelial cells were deficient in migration, cord formation and sprouting. Expression of genes involved in branching morphogenesis, Gcm1, Syna and Synb, and in patterning of the extracellular matrix, Mmrn1, were temporally dysregulated in the placentas. Egfl7 knockout did not affect expression of the microRNA embedded within intron 7. Collectively, these data reveal that Egfl7 is crucial for placental vascularization and embryonic growth, and may provide insight into etiological factors underlying placental pathologies associated with intrauterine growth restriction, which is a significant cause of infant morbidity and mortality.


Asunto(s)
Retardo del Crecimiento Fetal/metabolismo , Retardo del Crecimiento Fetal/patología , Neovascularización Fisiológica , Perfusión , Placenta/irrigación sanguínea , Placenta/embriología , Placentación , Proteínas/metabolismo , Animales , Secuencia de Bases , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , Tipificación del Cuerpo , Proteínas de Unión al Calcio , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Movimiento Celular , Regulación hacia Abajo/genética , Familia de Proteínas EGF , Células Endoteliales/metabolismo , Femenino , Sangre Fetal/metabolismo , Feto/embriología , Feto/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones Endogámicos C57BL , Ratones Noqueados , Tamaño de los Órganos , Placenta/metabolismo , Embarazo
5.
Genesis ; 52(7): 657-70, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24740971

RESUMEN

Epidermal growth factor-like domain 7 (Egfl7) expression in the developing embryo is largely restricted to sites of mesodermal progenitors of angioblasts/hemangioblasts and the vascular endothelium. We hypothesize that Egfl7 marks the endothelial lineage during embryonic development, and can be used to define the emergence of endothelial progenitor cells, as well as to visualize newly-forming vasculature in the embryo and during the processes of physiologic and pathologic angiogenesis in the adult. We have generated a transgenic mouse strain that expresses enhanced green fluorescent protein (eGFP) under the control of a minimal Egfl7 regulatory sequence (Egfl7:eGFP). Expression of the transgene recapitulated that of endogenous Egfl7 at sites of vasculogenesis and angiogenesis in the allantois, yolk sac, and in the embryo proper. The transgene was not expressed in the quiescent endothelium of most adult organs. However, the uterus and ovary, which undergo vascular growth and remodeling throughout the estrus cycle, expressed high levels of Egfl7:eGFP. Importantly, expression of the Egfl7:eGFP transgene was induced in adult neovasculature. We also found that increased Egfl7 expression contributed to pathologic revascularization in the mouse retina. To our knowledge, this is the first mouse model that enables monitoring of endothelial cells at sites of active vasculogenesis and angiogenesis. This model also facilitated the isolation and characterization of EGFL7(+) endothelial cell populations by fluorescence activated cell sorting (FACS). Together, our results demonstrate that the Egfl7:eGFP reporter mouse is a valuable tool that can be used to elucidate the mechanisms by which blood vessels form during development and under pathologic circumstances.


Asunto(s)
Linaje de la Célula , Células Progenitoras Endoteliales/metabolismo , Neovascularización Fisiológica , Proteínas/genética , Alantoides/metabolismo , Animales , Proteínas de Unión al Calcio , Familia de Proteínas EGF , Células Progenitoras Endoteliales/citología , Femenino , Ratones , Neovascularización Patológica , Ovario/crecimiento & desarrollo , Ovario/metabolismo , Proteínas/metabolismo , Vasos Retinianos/metabolismo , Retinopatía de la Prematuridad/metabolismo , Útero/crecimiento & desarrollo , Útero/metabolismo , Saco Vitelino/metabolismo
6.
bioRxiv ; 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38328217

RESUMEN

3D reconstructive imaging is a powerful strategy to interrogate the global architecture of tissues. We developed Atacama Clear (ATC), a novel method that increases 3D imaging signal-to-noise ratios (SNRs) while simultaneously increasing the capacity of tissue to be cleared. ATC potentiated the clearing capacity of all tested chemical reagents currently used for optical clearing by an average of 68%, and more than doubled SNRs. This increased imaging efficacy enabled multiplex interrogation of tough fibrous tissue and specimens that naturally exhibit high levels of background noise, including the heart, kidney, and human biopsies. Indeed, ATC facilitated visualization of previously undocumented adjacent nephron segments that exhibit notoriously high autofluorescence, elements of the cardiac conduction system, and the distinct human glomerular tissue layers, at single cell resolution. Moreover, ATC was validated to be compatible with fluorescent reporter proteins in murine, zebrafish, and 3D stem cell model systems. These data establish ATC for 3D imaging studies of challenging tissue types.

7.
Nat Commun ; 15(1): 3595, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678016

RESUMEN

Plasticity among cell lineages is a fundamental, but poorly understood, property of regenerative tissues. In the gut tube, the small intestine absorbs nutrients, whereas the colon absorbs electrolytes. In a striking display of inherent plasticity, adult colonic mucosa lacking the chromatin factor SATB2 is converted to small intestine. Using proteomics and CRISPR-Cas9 screening, we identify MTA2 as a crucial component of the molecular machinery that, together with SATB2, restrains colonic plasticity. MTA2 loss in the adult mouse colon activated lipid absorptive genes and functional lipid uptake. Mechanistically, MTA2 co-occupies DNA with HNF4A, an activating pan-intestinal transcription factor (TF), on colonic chromatin. MTA2 loss leads to HNF4A release from colonic chromatin, and accumulation on small intestinal chromatin. SATB2 similarly restrains colonic plasticity through an HNF4A-dependent mechanism. Our study provides a generalizable model of lineage plasticity in which broadly-expressed TFs are retained on tissue-specific enhancers to maintain cell identity and prevent activation of alternative lineages, and their release unleashes plasticity.


Asunto(s)
Cromatina , Colon , Factor Nuclear 4 del Hepatocito , Intestino Delgado , Proteínas de Unión a la Región de Fijación a la Matriz , Animales , Factor Nuclear 4 del Hepatocito/metabolismo , Factor Nuclear 4 del Hepatocito/genética , Intestino Delgado/metabolismo , Colon/metabolismo , Ratones , Cromatina/metabolismo , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Humanos , Mucosa Intestinal/metabolismo , Ratones Endogámicos C57BL , Masculino , Plasticidad de la Célula/genética , Linaje de la Célula , Ratones Noqueados
8.
Cell Stem Cell ; 31(2): 196-211.e6, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38237586

RESUMEN

COVID-19 patients commonly present with signs of central nervous system and/or peripheral nervous system dysfunction. Here, we show that midbrain dopamine (DA) neurons derived from human pluripotent stem cells (hPSCs) are selectively susceptible and permissive to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. SARS-CoV-2 infection of DA neurons triggers an inflammatory and cellular senescence response. High-throughput screening in hPSC-derived DA neurons identified several FDA-approved drugs that can rescue the cellular senescence phenotype by preventing SARS-CoV-2 infection. We also identified the inflammatory and cellular senescence signature and low levels of SARS-CoV-2 transcripts in human substantia nigra tissue of COVID-19 patients. Furthermore, we observed reduced numbers of neuromelanin+ and tyrosine-hydroxylase (TH)+ DA neurons and fibers in a cohort of severe COVID-19 patients. Our findings demonstrate that hPSC-derived DA neurons are susceptible to SARS-CoV-2, identify candidate neuroprotective drugs for COVID-19 patients, and suggest the need for careful, long-term monitoring of neurological problems in COVID-19 patients.


Asunto(s)
COVID-19 , Células Madre Pluripotentes , Humanos , SARS-CoV-2 , Neuronas Dopaminérgicas , Sistema Nervioso Central
9.
Cell Stem Cell ; 30(5): 571-591, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37146581

RESUMEN

Human pluripotent stem cells (hPSCs) and three-dimensional organoids have ushered in a new era for disease modeling and drug discovery. Over the past decade, significant progress has been in deriving functional organoids from hPSCs, which have been applied to recapitulate disease phenotypes. In addition, these advancements have extended the application of hPSCs and organoids for drug screening and clinical-trial safety evaluations. This review provides an overview of the achievements and challenges in using hPSC-derived organoids to conduct relevant high-throughput, high-contentscreens and drug evaluation. These studies have greatly enhanced our knowledge and toolbox for precision medicine.


Asunto(s)
Células Madre Pluripotentes , Humanos , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos/métodos , Organoides
10.
iScience ; 26(7): 107001, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37534130

RESUMEN

Population-based genome-wide association studies (GWAS) normally require a large sample size, which can be labor intensive and costly. Recently, we reported a human induced pluripotent stem cell (hiPSC) array-based GWAS method, identifying NDUFA4 as a host factor for Zika virus (ZIKV) infection. In this study, we extended our analysis to trophectoderm cells, which constitute one of the major routes of mother-to-fetus transmission of ZIKV during pregnancy. We differentiated hiPSCs from various donors into trophectoderm cells. We then infected cells carrying loss of function mutations in NDUFA4, harboring risk versus non-risk alleles of SNPs (rs917172 and rs12386620) or having deletions in the NDUFA4 cis-regulatory region with ZIKV. We found that loss/reduction of NDUFA4 suppressed ZIKV infection in trophectoderm cells. This study validated our published hiPSC array-based system as a useful platform for GWAS and confirmed the role of NDUFA4 as a susceptibility locus for ZIKV in disease-relevant trophectoderm cells.

11.
Cell Stem Cell ; 29(6): 873-875, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35659872

RESUMEN

Using an automatic microfluidics droplet platform, Ding et al. successfully replicated the tumor micro-environment by generating micro-organospheres, which were then used to predict the response to anti-tumor drugs. These miniature models could be obtained within an extremely short time frame of 14 days, amplifying their role in facilitating cancer treatment decisions.


Asunto(s)
Neoplasias , Humanos , Microfluídica , Neoplasias/diagnóstico , Medicina de Precisión , Microambiente Tumoral
12.
Front Chem ; 10: 963701, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36277347

RESUMEN

Coronavirus disease (COVID-19), which is caused by SARS-CoV-2, is the biggest challenge to the global public health and economy in recent years. Until now, only limited therapeutic regimens have been available for COVID-19 patients, sparking unprecedented efforts to study coronavirus biology. The genome of SARS-CoV-2 encodes 16 non-structural, four structural, and nine accessory proteins, which mediate the viral life cycle, including viral entry, RNA replication and transcription, virion assembly and release. These processes depend on the interactions between viral polypeptides and host proteins, both of which could be potential therapeutic targets for COVID-19. Here, we will discuss the potential medicinal value of essential proteins of SARS-CoV-2 and key host factors. We summarize the most updated therapeutic interventions for COVID-19 patients, including those approved clinically or in clinical trials.

13.
iScience ; 25(5): 104223, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35434541

RESUMEN

The effect of SARS-CoV-2 infection on placental function is not well understood. Analysis of placentas from women who tested positive at delivery showed SARS-CoV-2 genomic and subgenomic RNA in 22 out of 52 placentas. Placentas from two mothers with symptomatic COVID-19 whose pregnancies resulted in adverse outcomes for the fetuses contained high levels of viral Alpha variant RNA. The RNA was localized to the trophoblasts that cover the fetal chorionic villi in direct contact with maternal blood. The intervillous spaces and villi were infiltrated with maternal macrophages and T cells. Transcriptome analysis showed an increased expression of chemokines and pathways associated with viral infection and inflammation. Infection of placental cultures with live SARS-CoV-2 and spike protein-pseudotyped lentivirus showed infection of syncytiotrophoblast and, in rare cases, endothelial cells mediated by ACE2 and Neuropilin-1. Viruses with Alpha, Beta, and Delta variant spikes infected the placental cultures at significantly greater levels.

14.
Cell Stem Cell ; 29(10): 1475-1490.e6, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36206731

RESUMEN

Population-based studies to identify disease-associated risk alleles typically require samples from a large number of individuals. Here, we report a human-induced pluripotent stem cell (hiPSC)-based screening strategy to link human genetics with viral infectivity. A genome-wide association study (GWAS) identified a cluster of single-nucleotide polymorphisms (SNPs) in a cis-regulatory region of the NDUFA4 gene, which was associated with susceptibility to Zika virus (ZIKV) infection. Loss of NDUFA4 led to decreased sensitivity to ZIKV, dengue virus, and SARS-CoV-2 infection. Isogenic hiPSC lines carrying non-risk alleles of SNPs or deletion of the cis-regulatory region lower sensitivity to viral infection. Mechanistic studies indicated that loss/reduction of NDUFA4 causes mitochondrial stress, which leads to the leakage of mtDNA and thereby upregulation of type I interferon signaling. This study provides proof-of-principle for the application of iPSC arrays in GWAS and identifies NDUFA4 as a previously unknown susceptibility locus for viral infection.


Asunto(s)
COVID-19 , Dengue , Complejo IV de Transporte de Electrones , Infección por el Virus Zika , Humanos , Alelos , COVID-19/genética , ADN Mitocondrial/metabolismo , Complejo IV de Transporte de Electrones/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Células Madre Pluripotentes Inducidas/metabolismo , Interferón Tipo I/metabolismo , Polimorfismo de Nucleótido Simple , SARS-CoV-2 , Virus Zika , Infección por el Virus Zika/genética , Dengue/genética
15.
Cell Chem Biol ; 28(3): 257-270, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33651977

RESUMEN

The high-throughput phenotypic screen (HTPS) has become an emerging technology to discover synthetic small molecules that regulate stem cell fates. Here, we review the application of HTPS to identify small molecules controlling stem cell renewal, reprogramming, differentiation, and lineage conversion. Moreover, we discuss the use of HTPS to discover small molecules/polymers mimicking the stem cell extracellular niche. Furthermore, HTPSs have been applied on whole-animal models to identify small molecules regulating stem cell renewal or differentiation in vivo. Finally, we discuss the examples of the utilization of HTPS in stem cell-based disease modeling, as well as in the discovery of novel drug candidates for cancer, diabetes, and infectious diseases. Overall, HTPSs have provided many powerful tools for the stem cell field, which not only facilitate the generation of functional cells/tissues for replacement therapy, disease modeling, and drug screening, but also help dissect molecular mechanisms regulating physiological and pathological processes.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Células Madre/citología , Biología Celular , Diferenciación Celular , Humanos , Fenotipo
16.
bioRxiv ; 2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34100019

RESUMEN

SARS-CoV-2 infection during pregnancy leads to an increased risk of adverse pregnancy outcomes. Although the placenta itself can be a target of virus infection, most neonates are virus free and are born healthy or recover quickly. Here, we investigated the impact of SARS-CoV-2 infection on the placenta from a cohort of women who were infected late during pregnancy and had tested nasal swab positive for SARS-CoV-2 by qRT-PCR at delivery. SARS-CoV-2 genomic and subgenomic RNA was detected in 23 out of 54 placentas. Two placentas with high virus content were obtained from mothers who presented with severe COVID-19 and whose pregnancies resulted in adverse outcomes for the fetuses, including intrauterine fetal demise and a preterm delivered baby still in newborn intensive care. Examination of the placental samples with high virus content showed efficient SARS-CoV-2 infection, using RNA in situ hybridization to detect genomic and replicating viral RNA, and immunohistochemistry to detect SARS-CoV-2 nucleocapsid protein. Infection was restricted to syncytiotrophoblast cells that envelope the fetal chorionic villi and are in direct contact with maternal blood. The infected placentas displayed massive infiltration of maternal immune cells including macrophages into intervillous spaces, potentially contributing to inflammation of the tissue. Ex vivo infection of placental cultures with SARS-CoV-2 or with SARS-CoV-2 spike (S) protein pseudotyped lentivirus targeted mostly syncytiotrophoblast and in rare events endothelial cells. Infection was reduced by using blocking antibodies against ACE2 and against Neuropilin 1, suggesting that SARS-CoV-2 may utilize alternative receptors for entry into placental cells.

17.
Res Sq ; 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34031650

RESUMEN

COVID-19 patients commonly present with neurological signs of central nervous system (CNS)1-3 and/or peripheral nervous system dysfunction4. However, which neural cells are permissive to infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been controversial. Here, we show that midbrain dopamine (DA) neurons derived from human pluripotent stem cells (hPSCs) are selectively permissive to SARS-CoV-2 infection both in vitro and upon transplantation in vivo, and that SARS-CoV-2 infection triggers a DA neuron inflammatory and cellular senescence response. A high-throughput screen in hPSC-derived DA neurons identified several FDA approved drugs, including riluzole, metformin, and imatinib, that can rescue the cellular senescence phenotype and prevent SARS-CoV-2 infection. RNA-seq analysis of human ventral midbrain tissue from COVID-19 patients, using formalin-fixed paraffin-embedded autopsy samples, confirmed the induction of an inflammatory and cellular senescence signature and identified low levels of SARS-CoV-2 transcripts. Our findings demonstrate that hPSC-derived DA neurons can serve as a disease model to study neuronal susceptibility to SARS-CoV-2 and to identify candidate neuroprotective drugs for COVID-19 patients. The susceptibility of hPSC-derived DA neurons to SARS-CoV-2 and the observed inflammatory and senescence transcriptional responses suggest the need for careful, long-term monitoring of neurological problems in COVID-19 patients.

18.
Cell Metab ; 33(8): 1577-1591.e7, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34081913

RESUMEN

Recent clinical data have suggested a correlation between coronavirus disease 2019 (COVID-19) and diabetes. Here, we describe the detection of SARS-CoV-2 viral antigen in pancreatic beta cells in autopsy samples from individuals with COVID-19. Single-cell RNA sequencing and immunostaining from ex vivo infections confirmed that multiple types of pancreatic islet cells were susceptible to SARS-CoV-2, eliciting a cellular stress response and the induction of chemokines. Upon SARS-CoV-2 infection, beta cells showed a lower expression of insulin and a higher expression of alpha and acinar cell markers, including glucagon and trypsin1, respectively, suggesting cellular transdifferentiation. Trajectory analysis indicated that SARS-CoV-2 induced eIF2-pathway-mediated beta cell transdifferentiation, a phenotype that could be reversed with trans-integrated stress response inhibitor (trans-ISRIB). Altogether, this study demonstrates an example of SARS-CoV-2 infection causing cell fate change, which provides further insight into the pathomechanisms of COVID-19.


Asunto(s)
COVID-19/virología , Transdiferenciación Celular , Células Secretoras de Insulina/virología , SARS-CoV-2/patogenicidad , Acetamidas/farmacología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , COVID-19/mortalidad , Transdiferenciación Celular/efectos de los fármacos , Chlorocebus aethiops , Ciclohexilaminas/farmacología , Citocinas/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Femenino , Glucagón , Interacciones Huésped-Patógeno , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Masculino , Persona de Mediana Edad , Fenotipo , Transducción de Señal , Técnicas de Cultivo de Tejidos , Tripsina/metabolismo , Células Vero , Adulto Joven
19.
Nat Commun ; 10(1): 4155, 2019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-31519912

RESUMEN

Zika virus (ZIKV) infection results in an increased risk of spontaneous abortion and poor intrauterine growth although the underlying mechanisms remain undetermined. Little is known about the impact of ZIKV infection during the earliest stages of pregnancy, at pre- and peri-implantation, because most current ZIKV pregnancy studies have focused on post-implantation stages. Here, we demonstrate that trophectoderm cells of pre-implantation human and mouse embryos can be infected with ZIKV, and propagate virus causing neural progenitor cell death. These findings are corroborated by the dose-dependent nature of ZIKV susceptibility of hESC-derived trophectoderm cells. Single blastocyst RNA-seq reveals key transcriptional changes upon ZIKV infection, including nervous system development, prior to commitment to the neural lineage. The pregnancy rate of mice is >50% lower in pre-implantation infection than infection at E4.5, demonstrating that pre-implantation ZIKV infection leads to miscarriage. Cumulatively, these data elucidate a previously unappreciated association of pre- and peri-implantation ZIKV infection and microcephaly.


Asunto(s)
Complicaciones Infecciosas del Embarazo/metabolismo , Infección por el Virus Zika/complicaciones , Infección por el Virus Zika/metabolismo , Virus Zika/patogenicidad , Aborto Espontáneo/metabolismo , Aborto Espontáneo/fisiopatología , Animales , Blastocisto/citología , Blastocisto/metabolismo , Implantación del Embrión/fisiología , Femenino , Desarrollo Fetal/genética , Desarrollo Fetal/fisiología , Humanos , Ratones , Ratones Endogámicos C57BL , Embarazo , ARN Viral/genética , Investigación Biomédica Traslacional/métodos , Trofoblastos/citología , Trofoblastos/metabolismo
20.
Transl Res ; 207: 19-29, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30620888

RESUMEN

Proper placental development is crucial to establish a successful pregnancy. Defective placentation is the major cause of several pregnancy complications, including preeclampsia (PE). We have previously demonstrated that the secreted factor Epidermal Growth Factor-like Domain 7 (EGFL7) is expressed in trophoblast cells of the human placenta and that it regulates trophoblast migration and invasion, suggesting a role in placental development. In the present study, we demonstrate that circulating levels of EGFL7 are undetectable in nonpregnant women, increase during pregnancy and decline toward term. Close to term, circulating levels of EGFL7 are significantly higher in patients affected by PE when compared to normal pregnancies. Consistent with these results, villus explant cultures obtained from placentas affected by PE display increased release of EGFL7 in the culture medium when compared to those from normal placentas. Our results suggest that increased release of placenta-derived EGFL7 and increased circulating levels of EGFL7 are associated with the clinical manifestation of PE.


Asunto(s)
Factores de Crecimiento Endotelial/sangre , Preeclampsia/sangre , Adulto , Proteínas de Unión al Calcio , Familia de Proteínas EGF , Endoglina/sangre , Análisis Factorial , Femenino , Humanos , Modelos Logísticos , Análisis Multivariante , Factor de Crecimiento Placentario/sangre , Embarazo , Análisis de Componente Principal , Receptor 1 de Factores de Crecimiento Endotelial Vascular/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA