Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 594(7861): 100-105, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33981041

RESUMEN

Ageing of the immune system, or immunosenescence, contributes to the morbidity and mortality of the elderly1,2. To define the contribution of immune system ageing to organism ageing, here we selectively deleted Ercc1, which encodes a crucial DNA repair protein3,4, in mouse haematopoietic cells to increase the burden of endogenous DNA damage and thereby senescence5-7 in the immune system only. We show that Vav-iCre+/-;Ercc1-/fl mice were healthy into adulthood, then displayed premature onset of immunosenescence characterized by attrition and senescence of specific immune cell populations and impaired immune function, similar to changes that occur during ageing in wild-type mice8-10. Notably, non-lymphoid organs also showed increased senescence and damage, which suggests that senescent, aged immune cells can promote systemic ageing. The transplantation of splenocytes from Vav-iCre+/-;Ercc1-/fl or aged wild-type mice into young mice induced senescence in trans, whereas the transplantation of young immune cells attenuated senescence. The treatment of Vav-iCre+/-;Ercc1-/fl mice with rapamycin reduced markers of senescence in immune cells and improved immune function11,12. These data demonstrate that an aged, senescent immune system has a causal role in driving systemic ageing and therefore represents a key therapeutic target to extend healthy ageing.


Asunto(s)
Envejecimiento/inmunología , Envejecimiento/fisiología , Sistema Inmunológico/inmunología , Sistema Inmunológico/fisiología , Inmunosenescencia/inmunología , Inmunosenescencia/fisiología , Especificidad de Órganos/inmunología , Especificidad de Órganos/fisiología , Envejecimiento/efectos de los fármacos , Envejecimiento/patología , Animales , Daño del ADN/inmunología , Daño del ADN/fisiología , Reparación del ADN/inmunología , Reparación del ADN/fisiología , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Femenino , Envejecimiento Saludable/inmunología , Envejecimiento Saludable/fisiología , Homeostasis/inmunología , Homeostasis/fisiología , Sistema Inmunológico/efectos de los fármacos , Inmunosenescencia/efectos de los fármacos , Masculino , Ratones , Especificidad de Órganos/efectos de los fármacos , Rejuvenecimiento , Sirolimus/farmacología , Bazo/citología , Bazo/trasplante
2.
Exp Physiol ; 103(11): 1469-1480, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30117227

RESUMEN

NEW FINDINGS: What is the central question of this study? Whether chronic oral rapamycin promotes beneficial effects on glucose/lipid metabolism and energy balance when administered to mice with an obesogenic diet rich in saturated fat and sucrose has not been explored. What is the main finding and its importance? Chronic oral rapamycin reduces body weight and fat gain, improves insulin sensitivity and reduces hepatic steatosis when administered to mice with a high-fat, high-sucrose diet. In addition, we make the new observation that there appear to be tissue-specific effects of rapamycin. Although rapamycin appears to impart its effects mainly on visceral adipose tissue, its effects on insulin sensitivity are mediated by subcutaneous adipose tissue. ABSTRACT: Excess adiposity is commonly associated with insulin resistance, which can increase the risk of cardiovascular disease. However, the exact molecular mechanisms by which obesity results in insulin resistance are yet to be understood clearly. The intracellular nutrient-sensing protein, mechanistic target of rapamycin (mTOR), is a crucial signalling component in the development of obesity-associated insulin resistance. Given that increased tissue activation of mTOR complex-1 (mTORC1) occurs in obesity, diabetes and ageing, we hypothesized that pharmacological inhibition of mTORC1 would improve metabolic dysregulation in diet-induced obesity. We administered continuous rapamycin, a specific mTORC1 inhibitor, orally to C57BL/6J mice concurrently with a high-fat, high-sucrose (HFHS) diet for 20 weeks. The control group received placebo microcapsules. Rapamycin-treated mice showed significantly reduced weight gain and adiposity (33.6 ± 4.9 versus 40.4 ± 3.0% body fat, P < 0.001, n = 8 mice per group), despite increased or equivalent food intake compared with the placebo group. The rapamycin-fed mice also demonstrated reduced plasma glucose (252 ± 57 versus 297 ± 67 mg dl-1 , P < 0.001) and improved insulin sensitivity during insulin and glucose tolerance testing. Rapamycin-treated mice also had lower plasma triglycerides (48 ± 13 versus 67 ± 11 mg/dL, P < 0.01) and hepatic triglyceride content (89 ± 15 versus 110 ± 19 mg/g liver, P < 0.05) compared with the placebo group. A moderately low dose of rapamycin decreased adiposity and improved the metabolic profile in a model of diet-induced obesity. These data suggest that low-grade chronic mTORC1 inhibition might be a potential strategy for anti-obesity therapies.


Asunto(s)
Adiposidad/efectos de los fármacos , Grasas de la Dieta , Sacarosa en la Dieta , Resistencia a la Insulina/fisiología , Hígado/efectos de los fármacos , Sirolimus/farmacología , Triglicéridos/metabolismo , Animales , Glucemia , Peso Corporal/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones
3.
Methods ; 108: 99-110, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27130890

RESUMEN

Functional studies of the roles that DNA helicases play in human cells have benefited immensely from DNA fiber (or single molecule) technologies, which enable us to discern minute differences in behaviors of individual replication forks in genomic DNA in vivo. DNA fiber technologies are a group of methods that use different approaches to unravel and stretch genomic DNA to its contour length, and display it on a glass surface in order to immuno-stain nucleoside analog incorporation into DNA to reveal tracks (or tracts) of replication. We have previously adopted a microfluidic approach to DNA stretching and used it to analyze DNA replication. This method was introduced under the moniker maRTA or microfluidic-assisted Replication Track Analysis, and we have since used it to analyze roles of the RECQ helicases WRN and BLM, and other proteins in normal and perturbed replication. Here we describe a novel application of maRTA to detect and measure repair of DNA damage produced by three different agents relevant to etiology or therapy of cancer: methyl-methanesulfonate, UV irradiation, and mitomycin C. Moreover, we demonstrate the utility of this method by analyzing DNA repair in cells with reduced levels of WRN or of the base excision repair protein XRCC1.


Asunto(s)
ADN Helicasas/genética , Reparación del ADN/genética , Replicación del ADN/genética , Técnicas Analíticas Microfluídicas/métodos , Animales , Daño del ADN/genética , ADN Helicasas/química , Humanos , Ratones , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/genética
4.
Proc Natl Acad Sci U S A ; 110(17): E1631-40, 2013 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-23569242

RESUMEN

Targeted disruption of RIIß-protein kinase A (PKA) in mice leads to a lean phenotype, increased nocturnal locomotor activity, and activation of brown adipose tissue. Because RIIß is abundantly expressed in both white and brown adipose tissue as well as the brain, the contribution of neuronal vs. peripheral PKA to these phenotypes was investigated. We used a Cre-Lox strategy to reexpress RIIß in a tissue-specific manner in either adipocytes or neurons. Mice with adipocyte-specific RIIß reexpression remained hyperactive and lean, but pan-neuronal RIIß reexpression reversed both phenotypes. Selective RIIß reexpression in all striatal medium spiny neurons with Darpp32-Cre corrected the hyperlocomotor phenotype, but the mice remained lean. Further analysis revealed that RIIß reexpression in D2 dopamine receptor-expressing medium spiny neurons corrected the hyperlocomotor phenotype, which demonstrated that the lean phenotype in RIIß-PKA-deficient mice does not develop because of increased locomotor activity. To identify the neurons responsible for the lean phenotype, we used specific Cre-driver mice to reexpress RIIß in agouti-related peptide (AgRP)-, proopiomelanocortin (POMC)-, single-minded 1 (Sim1)-, or steroidogenic factor 1 (SF1)-expressing neurons in the hypothalamus, but observed no rescue of the lean phenotype. However, when RIIß was reexpressed in multiple regions of the hypothalamus and striatum driven by Rip2-Cre, or specifically in GABAergic neurons driven by Vgat-ires-Cre, both the hyperactive and lean phenotypes were completely corrected. Bilateral injection of adeno-associated virus1 (AAV1)-Cre directly into the hypothalamus caused reexpression of RIIß and partially reversed the lean phenotype. These data demonstrate that RIIß-PKA deficiency in a subset of hypothalamic GABAergic neurons leads to the lean phenotype.


Asunto(s)
Adiposidad/genética , Encéfalo/metabolismo , Subunidad RIIbeta de la Proteína Quinasa Dependiente de AMP Cíclico/metabolismo , Metabolismo Energético/fisiología , Homeostasis/fisiología , Locomoción/fisiología , Neuronas/metabolismo , Análisis de Varianza , Animales , Western Blotting , Peso Corporal/genética , Calorimetría Indirecta , Subunidad RIIbeta de la Proteína Quinasa Dependiente de AMP Cíclico/genética , Cartilla de ADN/genética , Ensayo de Inmunoadsorción Enzimática , Genotipo , Inmunohistoquímica , Integrasas/metabolismo , Leptina/sangre , Ratones , Ratones Noqueados , Neuronas/fisiología , Reacción en Cadena de la Polimerasa , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
5.
PLoS Genet ; 9(8): e1003708, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23990801

RESUMEN

Most yeast ribosomal protein genes are duplicated and their characterization has led to hypotheses regarding the existence of specialized ribosomes with different subunit composition or specifically-tailored functions. In yeast, ribosomal protein genes are generally duplicated and evidence has emerged that paralogs might have specific roles. Unlike yeast, most mammalian ribosomal proteins are thought to be encoded by a single gene copy, raising the possibility that heterogenous populations of ribosomes are unique to yeast. Here, we examine the roles of the mammalian Rpl22, finding that Rpl22(-/-) mice have only subtle phenotypes with no significant translation defects. We find that in the Rpl22(-/-) mouse there is a compensatory increase in Rpl22-like1 (Rpl22l1) expression and incorporation into ribosomes. Consistent with the hypothesis that either ribosomal protein can support translation, knockdown of Rpl22l1 impairs growth of cells lacking Rpl22. Mechanistically, Rpl22 regulates Rpl22l1 directly by binding to an internal hairpin structure and repressing its expression. We propose that ribosome specificity may exist in mammals, providing evidence that one ribosomal protein can influence composition of the ribosome by regulating its own paralog.


Asunto(s)
Proteínas de Unión al ARN/genética , ARN/genética , Proteínas Ribosómicas/genética , Ribosomas/genética , Homología de Secuencia de Aminoácido , Secuencia de Aminoácidos , Animales , Regulación de la Expresión Génica , Ratones , Datos de Secuencia Molecular , Biosíntesis de Proteínas , ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo
6.
Nat Genet ; 39(4): 540-3, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17334366

RESUMEN

Whether mitochondrial mutations cause mammalian aging, or are merely correlated with it, is an area of intense debate. Here, we use a new, highly sensitive assay to redefine the relationship between mitochondrial mutations and age. We measured the in vivo rate of change of the mitochondrial genome at a single-base pair level in mice, and we demonstrate that the mutation frequency in mouse mitochondria is more than ten times lower than previously reported. Although we observed an 11-fold increase in mitochondrial point mutations with age, we report that a mitochondrial mutator mouse was able to sustain a 500-fold higher mutation burden than normal mice, without any obvious features of rapidly accelerated aging. Thus, our results strongly indicate that mitochondrial mutations do not limit the lifespan of wild-type mice.


Asunto(s)
Longevidad/genética , Mitocondrias/genética , Mutación Puntual/fisiología , Envejecimiento/genética , Animales , Células Cultivadas , ADN Polimerasa gamma , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Ratones , Ratones Transgénicos , Mitocondrias/enzimología , Mitocondrias/metabolismo
7.
bioRxiv ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38915625

RESUMEN

Variability in physical resilience to aging prompts a comprehensive examination of underlying mechanisms across organs and individuals. We conducted a detailed exploration of behavioral and physiological differences between C57BL/6 and CB6F1 mice across various age groups. In behavioral assays, B6 mice displayed superior performance in rotarod tasks but higher anxiety while CB6F1 mice exhibited a decline in short-term memory with age. Grip strength, long-term memory, and voluntary wheel running declined similarly with age in both strains. Examining physiological phenotypes, B6 mice exhibited lower body fat percentages across ages compared to CB6F1 mice, though cataract severity worsened with age in both strains. Analysis of cardiac functions revealed differences between strains, with worsening left ventricular hypertrophy and structural heart abnormalities with age in CB6F1 mice along with higher blood pressure than B6. Lesion scores showed an age-related increase in heart, kidney, and liver lesions in both strains, while lung lesions worsened with age only in CB6F1 mice. This study underscores the validity of behavioral assays and geropathology assessment in reflecting age-related decline and emphasizes the importance of considering strain specificity when using mouse models to study human aging.

8.
Geroscience ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755466

RESUMEN

Aging is a primary risk factor for cognitive impairment and exacerbates multiple biological processes in the brain, including but not limited to nutrient sensing, insulin signaling, and histone deacetylation activity. Therefore, a pharmaceutical intervention of aging that targets distinct but overlapping pathways provides a basis for testing combinations of drugs as a cocktail. Our previous study showed that middle-aged mice treated with a cocktail of rapamycin, acarbose, and phenylbutyrate for 3 months had increased resilience to age-related cognitive decline. This finding provided the rationale to investigate the transcriptomic and molecular changes within the brains of mice that received this cocktail treatment or control treatment. Transcriptomic profiles were generated through ribonucleic acid (RNA) sequencing, and pathway analysis was performed by gene set enrichment analysis to evaluate the overall RNA message effect of the drug cocktail. Molecular endpoints representing aging pathways were measured using immunohistochemistry to further validate the attenuation of brain aging in the hippocampus of mice that received the cocktail treatment, each individual drug or control. Results showed that biological processes that enhance aging were suppressed, with an increased trend of autophagy in the brains of mice given the drug cocktail. The molecular endpoint assessments indicated that treatment with the drug cocktail was overall more effective than any of the individual drugs for relieving cognitive impairment by targeting multiple aging pathways.

9.
Geroscience ; 46(2): 2571-2581, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38103095

RESUMEN

The ability to quantify aging-related changes in histological samples is important, as it allows for evaluation of interventions intended to effect health span. We used a machine learning architecture that can be trained to detect and quantify these changes in the mouse kidney. Using additional held out data, we show validation of our model, correlation with scores given by pathologists using the Geropathology Research Network aging grading scheme, and its application in providing reproducible and quantifiable age scores for histological samples. Aging quantification also provides the insights into possible changes in image appearance that are independent of specific geropathology-specified lesions. Furthermore, we provide trained classifiers for H&E-stained slides, as well as tutorials on how to use these and how to create additional classifiers for other histological stains and tissues using our architecture. This architecture and combined resources allow for the high throughput quantification of mouse aging studies in general and specifically applicable to kidney tissues.


Asunto(s)
Envejecimiento , Aprendizaje Automático , Ratones , Animales , Envejecimiento/patología , Riñón
10.
bioRxiv ; 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38352353

RESUMEN

The process of aging is defined by the breakdown of critical maintenance pathways leading to an accumulation of damage and its associated phenotypes. Aging affects many systems and is considered the greatest risk factor for a number of diseases. Therefore, interventions aimed at establishing resilience to aging should delay or prevent the onset of age-related diseases. Recent studies have shown a three-drug cocktail consisting of rapamycin, acarbose, and phenylbutyrate delayed the onset of physical, cognitive, and biological aging phenotypes in old mice. To test the ability of this drug cocktail to impact Alzheimer's disease (AD), an adeno-associated-viral vector model of AD was created. Mice were fed the drug cocktail 2 months prior to injection and allowed 3 months for phenotypic development. Cognitive phenotypes were evaluated through a spatial navigation learning task. To quantify neuropathology, immunohistochemistry was performed for AD proteins and pathways of aging. Results suggested the drug cocktail was able to increase resilience to cognitive impairment, inflammation, and AD protein aggregation while enhancing autophagy and synaptic integrity, preferentially in female cohorts. In conclusion, female mice were more susceptible to the development of early stage AD neuropathology and learning impairment, and more responsive to treatment with the drug cocktail in comparison to male mice. Translationally, a model of AD where females are more susceptible would have greater value as women have a greater burden and incidence of disease compared to men. These findings validate past results and provide the rationale for further investigations into enhancing resilience to early-stage AD by enhancing resilience to aging.

11.
Biogerontology ; 14(6): 729-39, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24030242

RESUMEN

Alpha klotho (known as klotho) is a multifunctional protein that may be linked to age-associated decline in tissue homeostasis. The original klotho hypomorphic (klotho (hm) ) mouse, produced on a mixed C57BL/6 and C3H background, is short lived and exhibits extensive aging-like deterioration of several body systems. Differently, klotho (hm) mice on a pure C57BL/6 background do not appear sickly nor die young, which has permitted us to gain insight into the effect of klotho deficiency in adult life. First, analyzing klotho transcript levels in the kidney, the main site of klotho production, we demonstrated a 71-fold decline in klotho (hm) females compared to wildtype females versus only a 4-fold decline in mutant males. We then examined the effect of klotho deficiency on muscle-related attributes in adult mice, focusing on 7-11 month old females. Body weight and forelimb grip strength were significantly reduced in klotho (hm) mice compared to wildtype and klotho overexpressing mice. The female mice were also subjected to voluntary wheel running for a period of 6 days. Running endurance was markedly reduced in klotho (hm) mice, which exhibited a sporadic running pattern that may be characteristic of repeated bouts of exhaustions. When actually running, klotho (hm) females ran at the same speed as wildtype and klotho overexpressing mice, but spent about 65 % less time running compared to the other two groups. Our novel results suggest an important link between klotho deficiency and muscle performance. This study provides a foundation for further research on klotho involvement as a potential inhibitor of age-associated muscle deterioration.


Asunto(s)
Glucuronidasa/deficiencia , Fuerza Muscular/genética , Músculo Esquelético/metabolismo , Resistencia Física/genética , Carrera , Animales , Peso Corporal/genética , Regulación hacia Abajo , Femenino , Genotipo , Glucuronidasa/genética , Proteínas Klotho , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Músculo Esquelético/fisiopatología , Fenotipo , ARN Mensajero/metabolismo , Factores Sexuales
12.
Nucleic Acids Res ; 39(18): 7992-8004, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21737425

RESUMEN

Oxidative DNA damage plays a role in disease development and the aging process. A prominent participant in orchestrating the repair of oxidative DNA damage, particularly single-strand breaks, is the scaffold protein XRCC1. A series of chronological and biological aging parameters in XRCC1 heterozygous (HZ) mice were examined. HZ and wild-type (WT) C57BL/6 mice exhibit a similar median lifespan of ~26 months and a nearly identical maximal life expectancy of ~37 months. However, a number of HZ animals (7 of 92) showed a propensity for abdominal organ rupture, which may stem from developmental abnormalities given the prominent role of XRCC1 in endoderm and mesoderm formation. For other end-points evaluated-weight, fat composition, blood chemistries, condition of major organs, tissues and relevant cell types, behavior, brain volume and function, and chromosome and telomere integrity-HZ mice exhibited by-and-large a normal phenotype. Treatment of animals with the alkylating agent azoxymethane resulted in both liver toxicity and an increased incidence of precancerous lesions in the colon of HZ mice. Our study indicates that XRCC1 haploinsufficiency in mammals has little effect on chronological longevity and many key biological markers of aging in the absence of environmental challenges, but may adversely affect normal animal development or increase disease susceptibility to a relevant genotoxic exposure.


Asunto(s)
Envejecimiento/genética , Proteínas de Unión al ADN/genética , Haploinsuficiencia , Alquilantes/toxicidad , Animales , Conducta Animal , Peso Corporal , Células de la Médula Ósea/efectos de los fármacos , Encéfalo/anatomía & histología , Encéfalo/metabolismo , Supervivencia Celular/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Susceptibilidad a Enfermedades , Femenino , Inestabilidad Genómica , Masculino , Ratones , Ratones Endogámicos C57BL , Mutágenos/toxicidad , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
13.
Aging Pathobiol Ther ; 5(1): 33-35, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37035833

RESUMEN

Sleep deprivation is known to cause memory impairment and is associated with inflammation and cell damage linked to neurodegenerative diseases. GHK (glycyl-L-histidyl-L-lysine) is a naturally occurring tripeptide found in mammalian plasma. GHK has anti-inflammatory activity and can pass through the blood-brain barrier suggesting the potential to prevent neuroinflammation associated with sleep deprivation. In this study, mice were injected with 15 mg/kg GHK per day for five days and sleep deprived on the last two days of treatment. Sleep-deprived mice treated with GHK did not show the acute learning impairment seen in sleep-deprived mice treated with saline. GHK prevented an increase in MCP-1 and nitrotyrosine levels in the hippocampus of sleep-deprived mice suggesting that inflammatory and reactive nitrogen/oxygen species activity could be therapeutic targets for learning impairment associated with short-term sleep deprivation.

14.
Aging Pathobiol Ther ; 5(1): 36-38, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37427388

RESUMEN

Cognitive impairment associated with memory loss and dysfunctional communication is a common condition in older people. Regions of the brain have been reported to decrease in size with increasing age, but the relationship with cognitive impairment is not well understood. Inbred and hybrid mouse strains can be useful models to investigate cognitive impairment and morphological changes at older ages. CB6F1 hybrid mice, a cross between C57BL/6 and Balb/c mice, were tested for learning and memory using a radial water tread maze. Old CB6F1 male mice (30 months of age) had severe cognitive impairment, while it was virtually absent in young (6 months old) male mice. In these same mice, there was a significant decrease in sagittal flat surface area of the hippocampus and pons in old versus young animals. The aging CB6F1 mouse would be a potential model to study the relationship between changes in brain morphometry and cognitive impairment and the identification of possible therapeutic targets.

15.
Aging Pathobiol Ther ; 5(4): 154-156, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38933082

RESUMEN

Alzheimer's disease (AD) is a devastating neurodegenerative condition with unknown etiology and no cure. Therefore, it is imperative to learn more about the underlying risk factors. Since AD is an age-related disease, one approach is to look at factors associated with aging. One example is sleep disruption, which increases with age and accelerates the progression of cognitive decline. However, some people with sleep loss experience little or no cognitive impairment and are considered resilient. The concept that resilience to sleep disruption increases resistance to AD can be modeled in aging mice with or without cognitive impairment to determine resistance or susceptibility to AD. Given that sleep disruption is a relevant and rising health concern, it is essential to gain a better understanding of resilience, and factors associated with resistance to AD, in order to develop successful intervention strategies.

16.
bioRxiv ; 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37461572

RESUMEN

The ability to quantify aging-related changes in histological samples is important, as it allows for evaluation of interventions intended to effect health span. We used a machine learning architecture that can be trained to detect and quantify these changes in the mouse kidney. Using additional held out data, we show validation of our model, correlation with scores given by pathologists using the Geropathology Research Network aging grading scheme, and its application in providing reproducible and quantifiable age scores for histological samples. Aging quantification also provides the insights into possible changes in image appearance that are independent of specific geropathology-specified lesions. Furthermore, we provide trained classifiers for H&E-stained slides, as well as tutorials on how to use these and how to create additional classifiers for other histological stains and tissues using our architecture.This architecture and combined resources allow for the high throughput quantification of mouse aging studies in general and specifically applicable to kidney tissues.

17.
bioRxiv ; 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38045355

RESUMEN

Efforts to find disease modifying treatments for Alzheimer's disease (AD) have met with limited success in part because the focus has been on testing drugs that target a specific pathogenic mechanism. Multiple pathways have been implicated in the pathogenesis of AD. Hence, the probability of more effective treatment for AD is likely increased by using an intervention that targets more than one pathway. The naturally occurring peptide GHK (glycyl-L-histidyl-L-lysine), as a GHK-Cu complex, supports angiogenesis, remodeling, and tissue repair, has anti-inflammatory and antioxidant properties, and has been shown to improve cognitive performance in aging mice. In order to test GHK-Cu as a neurotherapeutic for AD, male and female 5xFAD transgenic mice on the C57BL/6 background at 4 months of age were given 15 mg/kg GHK-Cu intranasally 3 times per week for 3 months until 7 months of age. Results showed that intranasal GHK-Cu treatment delayed cognitive impairment, reduced amyloid plaques, and lowered inflammation levels in the frontal cortex and hippocampus. These observations suggest additional studies are warranted to investigate the potential of GHK-Cu peptide as a promising treatment for AD.

18.
bioRxiv ; 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38014118

RESUMEN

Brain aging and cognitive decline are aspects of growing old. Age-related cognitive impairment entails the early stages of cognitive decline, and is extremely common, affecting millions of older people. Investigation into early cognitive decline as a treatable condition is relevant to a wide range of cognitive impairment conditions, since mild age-related neuropathology increases risk for more severe neuropathology and dementia associated with Alzheimer's Disease. Recent studies suggest that the naturally occurring peptide GHK (glycyl-L-histidyl-L-lysine) in its Cu-bound form, has the potential to treat cognitive decline associated with aging. In order to test this concept, male and female C57BL/6 mice, 20 months of age, were given intranasal GHK-Cu, 15 mg/kg daily, for two months. Results showed that mice treated with intranasal GHK-Cu had an enhanced level of cognitive performance in spatial memory and learning navigation tasks, and expressed decreased neuroinflammatory and axonal damage markers compared to mice treated with intranasal saline. These observations suggest that GHK-Cu can enhance resilience to brain aging, and has translational implications for further testing in both preclinical and clinical studies using an atomizer device for intranasal delivery.

19.
Geroscience ; 45(4): 2245-2255, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36840897

RESUMEN

The pathology of aging impacts multiple organ systems, including the kidney and skeletal and cardiac muscles. Long-term treatment with the mitochondrial-targeted peptide elamipretide has previously been shown to improve in vivo mitochondrial function in aged mice, which is associated with increased fatigue resistance and treadmill performance, improved cardiovascular diastolic function, and glomerular architecture of the kidney. However, elamipretide is a short tetrameric peptide that is not orally bioavailable, limiting its routes of administration. This study tested whether twice weekly intermittent injections of elamipretide could recapitulate the same functional improvements as continuous long-term infusion. We found that intermittent treatment with elamipretide for 8 months preserved exercise tolerance and left ventricular mass in mice with modest protection of diastolic function and skeletal muscle force production but did not affect kidney function as previously reported using continuous treatment.


Asunto(s)
Tolerancia al Ejercicio , Oligopéptidos , Femenino , Animales , Ratones , Mitocondrias , Envejecimiento
20.
Aging Pathobiol Ther ; 5(3): 101-106, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38706773

RESUMEN

The ability to respond to physical stress that disrupts normal physiological homeostasis at an older age embraces the concept of resilience to aging. A physical stressor could be used to induce physiological responses that are age-related, since resilience declines with increasing age. Increased fat and sugar intake is a nutritional stress with a high prevalence of obesity in older people. In order to determine the effect of this type of diet on resilience to aging, 18-month-old C57BL/6J male mice were fed a diet high in saturated fat (lard) and sucrose (HFS) for ten months. At the end of the 10-month study, mice fed the HFS diet showed increased cognitive impairment, decreased cardiac function, decreased strength and agility, and increased severity of renal pathology compared to mice fed a rodent chow diet low in saturated fat and sucrose (LFS). The degree of response aligned with decreased resilience to the long-term adverse effects of the diet with characteristics of accelerated aging. This observation suggests additional studies could be conducted to investigate the relationship between an accelerated decline in resilience to aging and enhanced resilience to aging under different dietary conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA