Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 289(40): 27418-31, 2014 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-25135640

RESUMEN

Structural maintenance of chromosome (SMC) proteins are key organizers of chromosome architecture and are essential for genome integrity. They act by binding to chromatin and connecting distinct parts of chromosomes together. Interestingly, their potential role in providing connections between chromatin and the mitotic spindle has not been explored. Here, we show that yeast SMC proteins bind directly to microtubules and can provide a functional link between microtubules and DNA. We mapped the microtubule-binding region of Smc5 and generated a mutant with impaired microtubule binding activity. This mutant is viable in yeast but exhibited a cold-specific conditional lethality associated with mitotic arrest, aberrant spindle structures, and chromosome segregation defects. In an in vitro reconstitution assay, this Smc5 mutant also showed a compromised ability to protect microtubules from cold-induced depolymerization. Collectively, these findings demonstrate that SMC proteins can bind to and stabilize microtubules and that SMC-microtubule interactions are essential to establish a robust system to maintain genome integrity.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Inestabilidad Genómica , Microtúbulos/química , Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Genoma Fúngico , Microtúbulos/genética , Unión Proteica , Estabilidad Proteica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
2.
Commun Biol ; 3(1): 773, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33319830

RESUMEN

Liquid-liquid phase separation (LLPS) has emerged as a central player in the assembly of membraneless compartments termed biomolecular condensates. These compartments are dynamic structures that can condense or dissolve under specific conditions to regulate molecular functions. Such properties allow biomolecular condensates to rapidly respond to changing endogenous or environmental conditions. Here, we review emerging roles for LLPS within the nuclear space, with a specific emphasis on genome organization, expression and repair. Our review highlights the emerging notion that biomolecular condensates regulate the sequential engagement of molecules in multistep biological processes.


Asunto(s)
Núcleo Celular/metabolismo , Fenómenos Fisiológicos Celulares , Fraccionamiento Celular , Fraccionamiento Químico , Reparación del ADN , Células Eucariotas/fisiología , Regulación de la Expresión Génica , Genoma , Genómica/métodos , Heterocromatina/genética , Heterocromatina/metabolismo , Fracciones Subcelulares
3.
Sci Rep ; 10(1): 16034, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32994470

RESUMEN

Retrotransposons can represent half of eukaryotic genomes. Retrotransposon dysregulation destabilizes genomes and has been linked to various human diseases. Emerging regulators of retromobility include RNA-DNA hybrid-containing structures known as R-loops. Accumulation of these structures at the transposons of yeast 1 (Ty1) elements has been shown to increase Ty1 retromobility through an unknown mechanism. Here, via a targeted genetic screen, we identified the rnh1Δ rad27Δ yeast mutant, which lacked both the Ty1 inhibitor Rad27 and the RNA-DNA hybrid suppressor Rnh1. The mutant exhibited elevated levels of Ty1 cDNA-associated RNA-DNA hybrids that promoted Ty1 mobility. Moreover, in this rnh1Δ rad27Δ mutant, but not in the double RNase H mutant rnh1Δ rnh201Δ, RNA-DNA hybrids preferentially existed as duplex nucleic acid structures and increased Ty1 mobility in a Rad52-dependent manner. The data indicate that in cells lacking RNA-DNA hybrid and Ty1 repressors, elevated levels of RNA-cDNA hybrids, which are associated with duplex nucleic acid structures, boost Ty1 mobility via a Rad52-dependent mechanism. In contrast, in cells lacking RNA-DNA hybrid repressors alone, elevated levels of RNA-cDNA hybrids, which are associated with triplex nucleic acid structures, boost Ty1 mobility via a Rad52-independent process. We propose that duplex and triplex RNA-DNA hybrids promote transposon mobility via Rad52-dependent or -independent mechanisms.


Asunto(s)
Estructuras R-Loop/genética , Retroelementos/genética , Retroelementos/fisiología , ADN Complementario/genética , Endonucleasas de ADN Solapado/genética , Endonucleasas de ADN Solapado/metabolismo , ARN/genética , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Recombinación Genética/genética , Ribonucleasa H/metabolismo , Ribonucleasa H/fisiología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Cell Rep ; 26(11): 2875-2889.e3, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30865880

RESUMEN

The segregation of chromosomes is a critical step during cell division. This process is driven by the elongation of spindle microtubules and is tightly regulated by checkpoint mechanisms. It is unknown whether microtubules affect checkpoint responses as passive contributors or active regulators of the process. We show here that interphase microtubules are essential to temporally restrict the effects of DNA replication stress to S phase in Saccharomyces cerevisiae. Tubulin mutants hypersensitive to DNA damage experience a strong but delayed mitotic checkpoint arrest after exposure to genotoxic stress in S phase. This untimely arrest is dependent on the Aurora B kinase but, surprisingly, not on the DNA damage checkpoint. Impaired microtubule-kinetochore interaction is the apparent cause for this unusual phenotype. Collectively, our results reveal that core components of microtubules potentiate the detection of DNA lesions created in S phase, thereby suppressing untimely activation of mitotic checkpoints after DNA replication stress.


Asunto(s)
Aurora Quinasa B/genética , Replicación del ADN , Interfase , Microtúbulos/metabolismo , Mitosis , Aurora Quinasa B/metabolismo , Daño del ADN , Cinetocoros/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
J Mol Biol ; 429(5): 715-731, 2017 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-28147230

RESUMEN

Cytokinesis of animal cells requires the assembly of a contractile ring, which promotes daughter cell splitting. Anillin is a conserved scaffold protein involved in organizing the structural components of the contractile ring including filamentous actin (F-actin), myosin, and septins and in forming the subsequent midbody ring. Like other metazoan homologs, Drosophila anillin contains a conserved domain that can bind and bundle F-actin, but the importance and molecular details of its interaction with F-actin remain unclear. Here, we show that in a depletion-and-rescue assay in Drosophila S2 cells, anillin lacking the entire actin-binding domain (ActBD) exhibits defective cortical localization during mitosis and a greatly diminished ability to support cytokinesis. Using in vitro binding assays and electron microscopy on recombinant fragments, we determine that the anillin ActBD harbors three distinct actin-binding sites (ABS 1-3). We show that each ABS binds to a distinct place on F-actin. Importantly, ABS1 and ABS3 partially overlap on the surface of actin and, therefore, interact with F-actin in a mutually exclusive fashion. Although ABS2 and ABS3 are sufficient for bundling, ABS1 contributes to the overall F-actin bundling activity of anillin and enables anillin to switch between two actin-bundling morphologies and promote the formation of three-dimensional F-actin bundles. Finally, we show that in live S2 cells, ABS2 and ABS3 are each required and together sufficient for the robust cortical localization of the ActBD during cytokinesis. Collectively, our structural, biochemical, and cell biological data suggest that multiple anillin-actin interaction modes promote the faithful progression of cytokinesis.


Asunto(s)
Actinas/metabolismo , Proteínas Contráctiles/metabolismo , Citocinesis , Dominios y Motivos de Interacción de Proteínas , Animales , Drosophila/metabolismo , Procesamiento de Imagen Asistido por Computador , Mitosis , Miosinas , Septinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA