Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Mol Cell Biol ; 22(3): 165-182, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32873929

RESUMEN

The nucleolus is the most prominent nuclear body and serves a fundamentally important biological role as a site of ribonucleoprotein particle assembly, primarily dedicated to ribosome biogenesis. Despite being one of the first intracellular structures visualized historically, the biophysical rules governing its assembly and function are only starting to become clear. Recent studies have provided increasing support for the concept that the nucleolus represents a multilayered biomolecular condensate, whose formation by liquid-liquid phase separation (LLPS) facilitates the initial steps of ribosome biogenesis and other functions. Here, we review these biophysical insights in the context of the molecular and cell biology of the nucleolus. We discuss how nucleolar function is linked to its organization as a multiphase condensate and how dysregulation of this organization could provide insights into still poorly understood aspects of nucleolus-associated diseases, including cancer, ribosomopathies and neurodegeneration as well as ageing. We suggest that the LLPS model provides the starting point for a unifying quantitative framework for the assembly, structural maintenance and function of the nucleolus, with implications for gene regulation and ribonucleoprotein particle assembly throughout the nucleus. The LLPS concept is also likely useful in designing new therapeutic strategies to target nucleolar dysfunction.


Asunto(s)
Nucléolo Celular/química , Envejecimiento/genética , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Ciclo Celular/fisiología , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Fraccionamiento Químico , Expresión Génica , Humanos , Extracción Líquido-Líquido , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Ribonucleoproteínas/metabolismo , Ribosomas/fisiología
2.
Mol Cell ; 83(18): 3268-3282.e7, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37689068

RESUMEN

Heritable non-genetic information can regulate a variety of complex phenotypes. However, what specific non-genetic cues are transmitted from parents to their descendants are poorly understood. Here, we perform metabolic methyl-labeling experiments to track the heritable transmission of methylation from ancestors to their descendants in the nematode Caenorhabditis elegans (C. elegans). We find heritable methylation in DNA, RNA, proteins, and lipids. We find that parental starvation elicits reduced fertility, increased heat stress resistance, and extended longevity in fed, naïve progeny. This intergenerational hormesis is accompanied by a heritable increase in N6'-dimethyl adenosine (m6,2A) on the 18S ribosomal RNA at adenosines 1735 and 1736. We identified DIMT-1/DIMT1 as the m6,2A and BUD-23/BUD23 as the m7G methyltransferases in C. elegans that are both required for intergenerational hormesis, while other rRNA methyltransferases are dispensable. This study labels and tracks heritable non-genetic material across generations and demonstrates the importance of rRNA methylation for regulating epigenetic inheritance.


Asunto(s)
Caenorhabditis elegans , Hormesis , Animales , ARN Ribosómico 18S , Caenorhabditis elegans/genética , Metiltransferasas/genética , Adenosina
3.
Mol Cell ; 82(2): 404-419.e9, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34798057

RESUMEN

The epitranscriptome has emerged as a new fundamental layer of control of gene expression. Nevertheless, the determination of the transcriptome-wide occupancy and function of RNA modifications remains challenging. Here we have developed Rho-seq, an integrated pipeline detecting a range of modifications through differential modification-dependent rhodamine labeling. Using Rho-seq, we confirm that the reduction of uridine to dihydrouridine (D) by the Dus reductase enzymes targets tRNAs in E. coli and fission yeast. We find that the D modification is also present on fission yeast mRNAs, particularly those encoding cytoskeleton-related proteins, which is supported by large-scale proteome analyses and ribosome profiling. We show that the α-tubulin encoding mRNA nda2 undergoes Dus3-dependent dihydrouridylation, which affects its translation. The absence of the modification on nda2 mRNA strongly impacts meiotic chromosome segregation, resulting in low gamete viability. Applying Rho-seq to human cells revealed that tubulin mRNA dihydrouridylation is evolutionarily conserved.


Asunto(s)
Segregación Cromosómica , Escherichia coli/genética , Meiosis , Procesamiento Postranscripcional del ARN , ARN Bacteriano/genética , ARN de Hongos/genética , ARN Mensajero/genética , Schizosaccharomyces/genética , Uridina/metabolismo , Cromosomas Bacterianos , Cromosomas Fúngicos , Cromosomas Humanos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Evolución Molecular , Células HCT116 , Humanos , Oxidación-Reducción , ARN Bacteriano/metabolismo , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Análisis de Secuencia de ARN , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
4.
Genes Dev ; 35(15-16): 1123-1141, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34301768

RESUMEN

Spliceosomal small nuclear RNAs (snRNAs) are modified by small Cajal body (CB)-specific ribonucleoproteins (scaRNPs) to ensure snRNP biogenesis and pre-mRNA splicing. However, the function and subcellular site of snRNA modification are largely unknown. We show that CB localization of the protein Nopp140 is essential for concentration of scaRNPs in that nuclear condensate; and that phosphorylation by casein kinase 2 (CK2) at ∼80 serines targets Nopp140 to CBs. Transiting through CBs, snRNAs are apparently modified by scaRNPs. Indeed, Nopp140 knockdown-mediated release of scaRNPs from CBs severely compromises 2'-O-methylation of spliceosomal snRNAs, identifying CBs as the site of scaRNP catalysis. Additionally, alternative splicing patterns change indicating that these modifications in U1, U2, U5, and U12 snRNAs safeguard splicing fidelity. Given the importance of CK2 in this pathway, compromised splicing could underlie the mode of action of small molecule CK2 inhibitors currently considered for therapy in cholangiocarcinoma, hematological malignancies, and COVID-19.


Asunto(s)
Células Intersticiales de Cajal/metabolismo , Metilación , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Empalme del ARN , ARN Nuclear Pequeño/metabolismo , Quinasa de la Caseína II/antagonistas & inhibidores , Quinasa de la Caseína II/metabolismo , Colangiocarcinoma/tratamiento farmacológico , Neoplasias Hematológicas/tratamiento farmacológico , Humanos , Fosforilación , ARN Nuclear Pequeño/química , Ribonucleoproteínas/metabolismo , Empalmosomas/genética , Tratamiento Farmacológico de COVID-19
5.
Nature ; 600(7889): 536-542, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34819669

RESUMEN

The cell is a multi-scale structure with modular organization across at least four orders of magnitude1. Two central approaches for mapping this structure-protein fluorescent imaging and protein biophysical association-each generate extensive datasets, but of distinct qualities and resolutions that are typically treated separately2,3. Here we integrate immunofluorescence images in the Human Protein Atlas4 with affinity purifications in BioPlex5 to create a unified hierarchical map of human cell architecture. Integration is achieved by configuring each approach as a general measure of protein distance, then calibrating the two measures using machine learning. The map, known as the multi-scale integrated cell (MuSIC 1.0), resolves 69 subcellular systems, of which approximately half are to our knowledge undocumented. Accordingly, we perform 134 additional affinity purifications and validate subunit associations for the majority of systems. The map reveals a pre-ribosomal RNA processing assembly and accessory factors, which we show govern rRNA maturation, and functional roles for SRRM1 and FAM120C in chromatin and RPS3A in splicing. By integration across scales, MuSIC increases the resolution of imaging while giving protein interactions a spatial dimension, paving the way to incorporate diverse types of data in proteome-wide cell maps.


Asunto(s)
Cromosomas , Proteoma , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Cromatina/genética , Cromosomas/metabolismo , Humanos , Proteínas Asociadas a Matriz Nuclear/metabolismo , Proteoma/metabolismo , ARN Ribosómico , Proteínas de Unión al ARN/genética
6.
Mol Cell ; 76(5): 694-696, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31809741

RESUMEN

The nucleolus is a phase-separated cell condensate where the initial steps of ribosome biogenesis take place. In this issue of Molecular Cell, Yao et al. (2019) report a super-resolution microscopy analysis of the internal structure of the nucleolus, revealing how nascent precursor ribosomal RNAs are initially partitioned and processed in this multilayered biocondensate.


Asunto(s)
Precursores del ARN , ARN Ribosómico , Nucléolo Celular , Humanos , Transporte de ARN , Ribosomas
7.
PLoS Genet ; 18(1): e1010012, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35041640

RESUMEN

Ribosomes are essential nanomachines responsible for protein production. Although ribosomes are present in every living cell, ribosome biogenesis dysfunction diseases, called ribosomopathies, impact particular tissues specifically. Here, we evaluate the importance of the box C/D snoRNA-associated ribosomal RNA methyltransferase fibrillarin (Fbl) in the early embryonic development of Xenopus laevis. We report that in developing embryos, the neural plate, neural crest cells (NCCs), and NCC derivatives are rich in fbl transcripts. Fbl knockdown leads to striking morphological defects affecting the eyes and craniofacial skeleton, due to lack of NCC survival caused by massive p53-dependent apoptosis. Fbl is required for efficient pre-rRNA processing and 18S rRNA production, which explains the early developmental defects. Using RiboMethSeq, we systematically reinvestigated ribosomal RNA 2'-O methylation in X. laevis, confirming all 89 previously mapped sites and identifying 15 novel putative positions in 18S and 28S rRNA. Twenty-three positions, including 10 of the new ones, were validated orthogonally by low dNTP primer extension. Bioinformatic screening of the X. laevis transcriptome revealed candidate box C/D snoRNAs for all methylated positions. Mapping of 2'-O methylation at six developmental stages in individual embryos indicated a trend towards reduced methylation at specific positions during development. We conclude that fibrillarin knockdown in early Xenopus embryos causes reduced production of functional ribosomal subunits, thus impairing NCC formation and migration.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Precursores del ARN/metabolismo , ARN Ribosómico 18S/metabolismo , ARN Ribosómico 28S/metabolismo , Xenopus laevis/crecimiento & desarrollo , Animales , Ojo/crecimiento & desarrollo , Ojo/metabolismo , Técnicas de Silenciamiento del Gen , Metilación , Cresta Neural/crecimiento & desarrollo , Cresta Neural/metabolismo , Placa Neural/crecimiento & desarrollo , Placa Neural/metabolismo , Procesamiento Postranscripcional del ARN , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética
8.
Blood ; 139(21): 3111-3126, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35213692

RESUMEN

The congenital bone marrow failure syndrome Diamond-Blackfan anemia (DBA) is typically associated with variants in ribosomal protein (RP) genes impairing erythroid cell development. Here we report multiple individuals with biallelic HEATR3 variants exhibiting bone marrow failure, short stature, facial and acromelic dysmorphic features, and intellectual disability. These variants destabilize a protein whose yeast homolog is known to synchronize the nuclear import of RPs uL5 (RPL11) and uL18 (RPL5), which are both critical for producing ribosomal subunits and for stabilizing the p53 tumor suppressor when ribosome biogenesis is compromised. Expression of HEATR3 variants or repression of HEATR3 expression in primary cells, cell lines of various origins, and yeast models impairs growth, differentiation, pre-ribosomal RNA processing, and ribosomal subunit formation reminiscent of DBA models of large subunit RP gene variants. Consistent with a role of HEATR3 in RP import, HEATR3-depleted cells or patient-derived fibroblasts display reduced nuclear accumulation of uL18. Hematopoietic progenitor cells expressing HEATR3 variants or small-hairpin RNAs knocking down HEATR3 synthesis reveal abnormal acceleration of erythrocyte maturation coupled to severe proliferation defects that are independent of p53 activation. Our study uncovers a new pathophysiological mechanism leading to DBA driven by biallelic HEATR3 variants and the destabilization of a nuclear import protein important for ribosome biogenesis.


Asunto(s)
Anemia de Diamond-Blackfan , Proteínas , Transporte Activo de Núcleo Celular/genética , Anemia de Diamond-Blackfan/metabolismo , Humanos , Mutación , Proteínas/genética , Proteínas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
9.
Nucleic Acids Res ; 50(11): 6284-6299, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35648437

RESUMEN

NAT10 is an essential enzyme that catalyzes N4-acetylcytidine (ac4C) in eukaryotic transfer RNA and 18S ribosomal RNA. Recent studies suggested that rRNA acetylation is dependent on SNORD13, a box C/D small nucleolar RNA predicted to base-pair with 18S rRNA via two antisense elements. However, the selectivity of SNORD13-dependent cytidine acetylation and its relationship to NAT10's essential function remain to be defined. Here, we demonstrate that SNORD13 is required for acetylation of a single cytidine of human and zebrafish 18S rRNA. In-depth characterization revealed that SNORD13-dependent ac4C is dispensable for human cell growth, ribosome biogenesis, translation and development. This loss of function analysis inspired a cross-evolutionary survey of the eukaryotic rRNA acetylation 'machinery' that led to the characterization of many novel metazoan SNORD13 genes. This includes an atypical SNORD13-like RNA in Drosophila melanogaster which guides ac4C to 18S rRNA helix 45 despite lacking one of the two rRNA antisense elements. Finally, we discover that Caenorhabditis elegans 18S rRNA is not acetylated despite the presence of an essential NAT10 homolog. Our findings shed light on the molecular mechanisms underlying SNORD13-mediated rRNA acetylation across eukaryotic evolution and raise new questions regarding the biological and evolutionary relevance of this highly conserved rRNA modification.


Asunto(s)
Eucariontes , ARN Ribosómico 18S , ARN Nucleolar Pequeño , Acetilación , Animales , Eucariontes/genética , Eucariontes/metabolismo , Humanos , ARN Ribosómico , ARN Ribosómico 18S/metabolismo , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , Subunidades Ribosómicas Pequeñas/metabolismo
10.
Am J Hum Genet ; 106(5): 694-706, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32359472

RESUMEN

How mutations in the non-coding U8 snoRNA cause the neurological disorder leukoencephalopathy with calcifications and cysts (LCC) is poorly understood. Here, we report the generation of a mutant U8 animal model for interrogating LCC-associated pathology. Mutant U8 zebrafish exhibit defective central nervous system development, a disturbance of ribosomal RNA (rRNA) biogenesis and tp53 activation, which monitors ribosome biogenesis. Further, we demonstrate that fibroblasts from individuals with LCC are defective in rRNA processing. Human precursor-U8 (pre-U8) containing a 3' extension rescued mutant U8 zebrafish, and this result indicates conserved biological function. Analysis of LCC-associated U8 mutations in zebrafish revealed that one null and one functional allele contribute to LCC. We show that mutations in three nucleotides at the 5' end of pre-U8 alter the processing of the 3' extension, and we identify a previously unknown base-pairing interaction between the 5' end and the 3' extension of human pre-U8. Indeed, LCC-associated mutations in any one of seven nucleotides in the 5' end and 3' extension alter the processing of pre-U8, and these mutations are present on a single allele in almost all individuals with LCC identified to date. Given genetic data indicating that bi-allelic null U8 alleles are likely incompatible with human development, and that LCC is not caused by haploinsufficiency, the identification of hypomorphic misprocessing mutations that mediate viable embryogenesis furthers our understanding of LCC molecular pathology and cerebral vascular homeostasis.


Asunto(s)
Alelos , Calcinosis/genética , Quistes del Sistema Nervioso Central/genética , Quistes/genética , Leucoencefalopatías/genética , Mutación , ARN Nucleolar Pequeño/genética , Pez Cebra/genética , Animales , Secuencia de Bases , Calcinosis/patología , Quistes del Sistema Nervioso Central/patología , Secuencia Conservada , Modelos Animales de Enfermedad , Desarrollo Embrionario/genética , Humanos , Leucoencefalopatías/patología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Pez Cebra/embriología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
11.
RNA Biol ; 20(1): 652-665, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-37635368

RESUMEN

Ribosomal RNAs are decorated by numerous post-transcriptional modifications whose exact roles in ribosome biogenesis, function, and human pathophysiology remain largely unknown. Here, we report a targeted direct rRNA sequencing approach involving a substrate selection step and demonstrate its suitability to identify differential modification sites in combination with the JACUSA2 software. We compared JACUSA2 to other tools designed for RNA modification detection and show that JACUSA2 outperforms other software with regard to detection of base modifications such as methylation, acetylation and aminocarboxypropylation. To illustrate its widespread usability, we applied our method to a collection of CRISPR-Cas9 engineered colon carcinoma cells lacking specific enzymatic activities responsible for particular rRNA modifications and systematically compared them to isogenic wild-type RNAs. Besides the numerous 2'-O methylated riboses and pseudouridylated residues, our approach was suitable to reliably identify differential base methylation and acetylation events. Importantly, our method does not require any prior knowledge of modification sites or the need to train complex models. We further report for the first time detection of human rRNA modifications by direct RNA-sequencing on Flongle flow cells, the smallest-scale nanopore flow cell available to date. The use of these smaller flow cells reduces RNA input requirements, making our workflow suitable for the analysis of samples with limited availability and clinical work.


Asunto(s)
Nanoporos , ARN , Humanos , ARN/genética , Ribosomas/genética , ARN Ribosómico/genética , Procesamiento Postranscripcional del ARN
12.
Nature ; 531(7595): 518-22, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-27008969

RESUMEN

Focal amplifications of chromosome 3p13-3p14 occur in about 10% of melanomas and are associated with a poor prognosis. The melanoma-specific oncogene MITF resides at the epicentre of this amplicon. However, whether other loci present in this amplicon also contribute to melanomagenesis is unknown. Here we show that the recently annotated long non-coding RNA (lncRNA) gene SAMMSON is consistently co-gained with MITF. In addition, SAMMSON is a target of the lineage-specific transcription factor SOX10 and its expression is detectable in more than 90% of human melanomas. Whereas exogenous SAMMSON increases the clonogenic potential in trans, SAMMSON knockdown drastically decreases the viability of melanoma cells irrespective of their transcriptional cell state and BRAF, NRAS or TP53 mutational status. Moreover, SAMMSON targeting sensitizes melanoma to MAPK-targeting therapeutics both in vitro and in patient-derived xenograft models. Mechanistically, SAMMSON interacts with p32, a master regulator of mitochondrial homeostasis and metabolism, to increase its mitochondrial targeting and pro-oncogenic function. Our results indicate that silencing of the lineage addiction oncogene SAMMSON disrupts vital mitochondrial functions in a cancer-cell-specific manner; this silencing is therefore expected to deliver highly effective and tissue-restricted anti-melanoma therapeutic responses.


Asunto(s)
Melanoma/genética , Melanoma/patología , Oncogenes/genética , ARN Largo no Codificante/genética , Animales , Carcinogénesis/genética , Carcinogénesis/patología , Proteínas Portadoras , Linaje de la Célula , Proliferación Celular , Supervivencia Celular , Cromosomas Humanos Par 3/genética , Células Clonales/metabolismo , Células Clonales/patología , Femenino , Amplificación de Genes/genética , Técnicas de Silenciamiento del Gen , Humanos , Melanoma/terapia , Ratones , Factor de Transcripción Asociado a Microftalmía/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas Mitocondriales/metabolismo , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Terapia Molecular Dirigida , ARN Largo no Codificante/uso terapéutico , Factores de Transcripción SOXE/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Nucleic Acids Res ; 48(21): 12310-12325, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33166396

RESUMEN

The Mtq2-Trm112 methyltransferase modifies the eukaryotic translation termination factor eRF1 on the glutamine side chain of a universally conserved GGQ motif that is essential for release of newly synthesized peptides. Although this modification is found in the three domains of life, its exact role in eukaryotes remains unknown. As the deletion of MTQ2 leads to severe growth impairment in yeast, we have investigated its role further and tested its putative involvement in ribosome biogenesis. We found that Mtq2 is associated with nuclear 60S subunit precursors, and we demonstrate that its catalytic activity is required for nucleolar release of pre-60S and for efficient production of mature 5.8S and 25S rRNAs. Thus, we identify Mtq2 as a novel ribosome assembly factor important for large ribosomal subunit formation. We propose that Mtq2-Trm112 might modify eRF1 in the nucleus as part of a quality control mechanism aimed at proof-reading the peptidyl transferase center, where it will subsequently bind during translation termination.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Metiltransferasas/genética , Biogénesis de Organelos , Factores de Terminación de Péptidos/genética , Subunidades Ribosómicas Grandes de Eucariotas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , ARNt Metiltransferasas/genética , Sitios de Unión , Biocatálisis , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Metiltransferasas/química , Metiltransferasas/metabolismo , Modelos Moleculares , Terminación de la Cadena Péptídica Traduccional , Factores de Terminación de Péptidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ARN Ribosómico/biosíntesis , ARN Ribosómico/genética , ARN Ribosómico 5.8S/biosíntesis , ARN Ribosómico 5.8S/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato , ARNt Metiltransferasas/química , ARNt Metiltransferasas/metabolismo
14.
Nucleic Acids Res ; 48(19): e110, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-32976574

RESUMEN

Developing methods for accurate detection of RNA modifications remains a major challenge in epitranscriptomics. Next-generation sequencing-based mapping approaches have recently emerged but, often, they are not quantitative and lack specificity. Pseudouridine (ψ), produced by uridine isomerization, is one of the most abundant RNA modification. ψ mapping classically involves derivatization with soluble carbodiimide (CMCT), which is prone to variation making this approach only semi-quantitative. Here, we developed 'HydraPsiSeq', a novel quantitative ψ mapping technique relying on specific protection from hydrazine/aniline cleavage. HydraPsiSeq is quantitative because the obtained signal directly reflects pseudouridine level. Furthermore, normalization to natural unmodified RNA and/or to synthetic in vitro transcripts allows absolute measurements of modification levels. HydraPsiSeq requires minute amounts of RNA (as low as 10-50 ng), making it compatible with high-throughput profiling of diverse biological and clinical samples. Exploring the potential of HydraPsiSeq, we profiled human rRNAs, revealing strong variations in pseudouridylation levels at ∼20-25 positions out of total 104 sites. We also observed the dynamics of rRNA pseudouridylation throughout chondrogenic differentiation of human bone marrow stem cells. In conclusion, HydraPsiSeq is a robust approach for the systematic mapping and accurate quantification of pseudouridines in RNAs with applications in disease, aging, development, differentiation and/or stress response.


Asunto(s)
Seudouridina/aislamiento & purificación , ARN Mensajero , ARN Ribosómico , ARN de Transferencia , Análisis de Secuencia de ARN/métodos , Células Cultivadas , Humanos , Células Madre Mesenquimatosas , Saccharomyces cerevisiae/genética
15.
Nucleic Acids Res ; 48(7): 3848-3868, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-31996908

RESUMEN

U3 snoRNA and the associated Rrp9/U3-55K protein are essential for 18S rRNA production by the SSU-processome complex. U3 and Rrp9 are required for early pre-rRNA cleavages at sites A0, A1 and A2, but the mechanism remains unclear. Substitution of Arg 289 in Rrp9 to Ala (R289A) specifically reduced cleavage at sites A1 and A2. Surprisingly, R289 is located on the surface of the Rrp9 ß-propeller structure opposite to U3 snoRNA. To understand this, we first characterized the protein-protein interaction network of Rrp9 within the SSU-processome. This identified a direct interaction between the Rrp9 ß-propeller domain and Rrp36, the strength of which was reduced by the R289A substitution, implicating this interaction in the observed processing phenotype. The Rrp9 R289A mutation also showed strong synergistic negative interactions with mutations in U3 that destabilize the U3/pre-rRNA base-pair interactions or reduce the length of their linking segments. We propose that the Rrp9 ß-propeller and U3/pre-rRNA binding cooperate in the structure or stability of the SSU-processome. Additionally, our analysis of U3 variants gave insights into the function of individual segments of the 5'-terminal 72-nt sequence of U3. We interpret these data in the light of recently reported SSU-processome structures.


Asunto(s)
Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN Ribosómico 18S/metabolismo , ARN Nucleolar Pequeño/química , Ribonucleoproteínas Nucleolares Pequeñas/química , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Mutación , Proteínas Nucleares/metabolismo , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , ARN Nucleolar Pequeño/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Proc Natl Acad Sci U S A ; 116(35): 17330-17335, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31399547

RESUMEN

The nucleolus is a prominent nuclear condensate that plays a central role in ribosome biogenesis by facilitating the transcription and processing of nascent ribosomal RNA (rRNA). A number of studies have highlighted the active viscoelastic nature of the nucleolus, whose material properties and phase behavior are a consequence of underlying molecular interactions. However, the ways in which the material properties of the nucleolus impact its function in rRNA biogenesis are not understood. Here we utilize the Cry2olig optogenetic system to modulate the viscoelastic properties of the nucleolus. We show that above a threshold concentration of Cry2olig protein, the nucleolus can be gelled into a tightly linked, low mobility meshwork. Gelled nucleoli no longer coalesce and relax into spheres but nonetheless permit continued internal molecular mobility of small proteins. These changes in nucleolar material properties manifest in specific alterations in rRNA processing steps, including a buildup of larger rRNA precursors and a depletion of smaller rRNA precursors. We propose that the flux of processed rRNA may be actively tuned by the cell through modulating nucleolar material properties, which suggests the potential of materials-based approaches for therapeutic intervention in ribosomopathies.


Asunto(s)
Nucléolo Celular/metabolismo , Procesamiento Postranscripcional del ARN/fisiología , ARN Ribosómico/metabolismo , Animales , Ratones , Células 3T3 NIH , Optogenética , Xenopus laevis
17.
RNA Biol ; 18(sup1): 61-74, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34775914

RESUMEN

Ribosomes are essential nanomachines responsible for all protein production in cells. Ribosome biogenesis and function are energy costly processes, they are tightly regulated to match cellular needs. In cancer, major pathways that control ribosome biogenesis and function are often deregulated to ensure cell survival and to accommodate the continuous proliferation of tumour cells. Ribosomal RNAs (rRNAs) are abundantly modified with 2'-O-methylation (Nm, ribomethylation) being one of the most common modifications. In eukaryotic ribosomes, ribomethylation is performed by the methyltransferase Fibrillarin guided by box C/D small nucleolar RNAs (snoRNAs). Accumulating evidences indicate that snoRNA expression and ribosome methylation profiles are altered in cancer. Here we review our current knowledge on differential snoRNA expression and rRNA 2'-O methylation in the context of human malignancies, and discuss the consequences and opportunities for cancer diagnostics, prognostics, and therapeutics.


Asunto(s)
Neoplasias/patología , Procesamiento Postranscripcional del ARN , ARN Ribosómico/química , ARN Ribosómico/genética , ARN Nucleolar Pequeño/genética , Ribosomas/metabolismo , Animales , Humanos , Metilación , Neoplasias/genética , Ribosomas/genética
18.
Mol Cell ; 51(4): 539-51, 2013 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-23973377

RESUMEN

Mature ribosomal RNAs (rRNAs) are produced from polycistronic precursors following complex processing. Precursor (pre)-rRNA processing has been extensively characterized in yeast and was assumed to be conserved in humans. We functionally characterized 625 nucleolar proteins in HeLa cells and identified 286 required for processing, including 74 without a yeast homolog. For selected candidates, we demonstrated that pre-rRNA processing defects are conserved in different cell types (including primary cells), defects are not due to activation of a p53-dependent nucleolar tumor surveillance pathway, and they precede cell-cycle arrest and apoptosis. We also investigated the exosome's role in processing internal transcribed spacers (ITSs) and report that 3' end maturation of 18S rRNA involves EXOSC10/Rrp6, a yeast ITS2 processing factor. We conclude that human cells adopt unique strategies and recruit distinct trans-acting factors to carry out essential processing steps, posing fundamental implications for understanding ribosomopathies at the molecular level and developing effective therapeutic agents.


Asunto(s)
Nucléolo Celular/genética , Proteínas Nucleares/metabolismo , Precursores del ARN/genética , Procesamiento Postranscripcional del ARN , ARN Ribosómico/genética , Ribosomas/metabolismo , Transactivadores/metabolismo , Apoptosis , Northern Blotting , Puntos de Control del Ciclo Celular , Nucléolo Celular/metabolismo , Células Cultivadas , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Células HCT116 , Células HeLa , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Proteínas Nucleares/genética , Precursores del ARN/metabolismo , ARN Ribosómico/metabolismo , Transactivadores/genética
19.
Nucleic Acids Res ; 47(14): 7548-7563, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31188444

RESUMEN

Ribosome biogenesis is an essential process in all living cells, which entails countless highly sequential and dynamic structural reorganization events. These include formation of dozens RNA helices through Watson-Crick base-pairing within ribosomal RNAs (rRNAs) and between rRNAs and small nucleolar RNAs (snoRNAs), transient association of hundreds of proteinaceous assembly factors to nascent precursor (pre-)ribosomes, and stable assembly of ribosomal proteins. Unsurprisingly, the largest group of ribosome assembly factors are energy-consuming proteins (NTPases) including 25 RNA helicases in budding yeast. Among these, the DEAH-box Dhr1 is essential to displace the box C/D snoRNA U3 from the pre-rRNAs where it is bound in order to prevent premature formation of the central pseudoknot, a dramatic irreversible long-range interaction essential to the overall folding of the small ribosomal subunit. Here, we report the crystal structure of the Dhr1 helicase module, revealing the presence of a remarkable carboxyl-terminal domain essential for Dhr1 function in ribosome biogenesis in vivo and important for its interaction with its coactivator Utp14 in vitro. Furthermore, we report the functional consequences on ribosome biogenesis of DHX37 (human Dhr1) mutations found in patients suffering from microcephaly and other neurological diseases.


Asunto(s)
ARN Helicasas DEAD-box/química , Dominios Proteicos , Subunidades Ribosómicas Pequeñas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Emparejamiento Base , Sitios de Unión/genética , Cristalografía por Rayos X , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Modelos Moleculares , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Nucleic Acids Res ; 47(15): 7719-7733, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31328227

RESUMEN

N6-methyladenosine (m6A) has recently been found abundantly on messenger RNA and shown to regulate most steps of mRNA metabolism. Several important m6A methyltransferases have been described functionally and structurally, but the enzymes responsible for installing one m6A residue on each subunit of human ribosomes at functionally important sites have eluded identification for over 30 years. Here, we identify METTL5 as the enzyme responsible for 18S rRNA m6A modification and confirm ZCCHC4 as the 28S rRNA modification enzyme. We show that METTL5 must form a heterodimeric complex with TRMT112, a known methyltransferase activator, to gain metabolic stability in cells. We provide the first atomic resolution structure of METTL5-TRMT112, supporting that its RNA-binding mode differs distinctly from that of other m6A RNA methyltransferases. On the basis of similarities with a DNA methyltransferase, we propose that METTL5-TRMT112 acts by extruding the adenosine to be modified from a double-stranded nucleic acid.


Asunto(s)
Adenosina/química , Regulación Neoplásica de la Expresión Génica , Metiltransferasas/química , ARN Mensajero/química , ARN Ribosómico 18S/química , Adenosina/genética , Adenosina/metabolismo , Secuencia de Bases , Sitios de Unión , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas , Línea Celular Tumoral , Cristalografía por Rayos X , Eliminación de Gen , Células HCT116 , Humanos , Metiltransferasas/genética , Metiltransferasas/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Ribosómico 18S/genética , ARN Ribosómico 18S/metabolismo , Transducción de Señal , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA