Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Regul Toxicol Pharmacol ; 149: 105619, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38614220

RESUMEN

The Xenopus Eleutheroembryonic Thyroid Assay (XETA) was recently published as an OECD Test Guideline for detecting chemicals acting on the thyroid axis. However, the OECD validation did not cover all mechanisms that can potentially be detected by the XETA. This study was therefore initiated to investigate and consolidate the applicability domain of the XETA regarding the following mechanisms: thyroid hormone receptor (THR) agonism, sodium-iodide symporter (NIS) inhibition, thyroperoxidase (TPO) inhibition, deiodinase (DIO) inhibition, glucocorticoid receptor (GR) agonism, and uridine 5'-diphospho-glucuronosyltransferase (UDPGT) induction. In total, 22 chemicals identified as thyroid-active or -inactive in Amphibian Metamorphosis Assays (AMAs) were tested using the XETA OECD Test Guideline. The comparison showed that both assays are highly concordant in identifying chemicals with mechanisms of action related to THR agonism, DIO inhibition, and GR agonism. They also consistently identified the UDPGT inducers as thyroid inactive. NIS inhibition, investigated using sodium perchlorate, was not detected in the XETA. TPO inhibition requires further mechanistic investigations as the reference chemicals tested resulted in opposing response directions in the XETA and AMA. This study contributes refining the applicability domain of the XETA, thereby helping to clarify the conditions where it can be used as an ethical alternative to the AMA.


Asunto(s)
Bioensayo , Disruptores Endocrinos , Metamorfosis Biológica , Simportadores , Glándula Tiroides , Animales , Glándula Tiroides/efectos de los fármacos , Glándula Tiroides/metabolismo , Metamorfosis Biológica/efectos de los fármacos , Bioensayo/métodos , Disruptores Endocrinos/toxicidad , Xenopus laevis , Receptores de Hormona Tiroidea/metabolismo , Receptores de Hormona Tiroidea/agonistas , Yoduro Peroxidasa/metabolismo
2.
Crit Rev Toxicol ; 53(5): 326-338, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37526219

RESUMEN

A systematic review was conducted on the sensitivity of fish testing guidelines to detect the anti-androgenic activity of substances. Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) was used to investigate the conservation of the androgen receptor (AR) between humans and fish, and among fish species recommended in test guidelines. The AR is conserved between fish species and humans (i.e. ligand binding domain [LBD] homology ≥70%) and among the recommended fish species (LBD homology >85%). For model anti-androgens, we evaluated literature data on in vitro anti-androgenic activity in fish-specific receptor-based assays and changes in endpoints indicative of endocrine modulation from in vivo studies. Anti-androgenic activity was most consistently and reliably detected in in vitro and in vivo mechanistic studies with co-exposure to an androgen (spiggin in vitro assay, Rapid Androgen Disruption Activity Reporter [RADAR] Assay, and Androgenised Female Stickleback Screen). Regardless of study design (Fish Short-Term Reproduction Assay [FSTRA], Fish Sexual Development Test [FSDT], partial or full life-cycle tests), or endpoint (vitellogenin, secondary sexual characteristics, gonadal histopathology, sex ratio), there was no consistent evidence for detecting anti-androgenic activity in studies without androgen co-exposure, even for the most potent substances (while less potent substances may induce no (clear) response). Therefore, based on studies without androgen co-exposure (35 FSTRAs and 22 other studies), the other studies (including the FSDT) do not outperform the FSTRA for detecting potent anti-androgenic activity, which if suspected, would be best addressed with a RADAR assay. Overall, fish do not appear particularly sensitive to mammalian anti-androgens.


Asunto(s)
Antagonistas de Andrógenos , Smegmamorpha , Animales , Humanos , Femenino , Andrógenos/farmacología , Peces , Smegmamorpha/fisiología , Mamíferos
3.
Regul Toxicol Pharmacol ; 145: 105501, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37820895

RESUMEN

Vitellogenin (VTG) is a biomarker for possible endocrine activity of chemicals acting via the estrogen, androgen, or steroidogenesis pathways. VTG is assessed in standardised fish guideline studies conducted for regulatory safety assessment of chemicals. VTG data can be highly variable leading to concerns for potential equivocal, false positive and/or negative outcomes. Consequently, additional fish testing may be required to address uncertainties in the VTG response, and possibly erroneous/missed identification of endocrine activity. To better understand the technical challenges of VTG assessment and reporting for regulatory purposes, a survey was sent to 27 testing laboratories performing these analyses. The survey results from 16 respondents (6 from the UK, 3 from the USA, and 7 from the EU) were analysed and discussed in a follow-up webinar. High variability in background VTG concentrations was widely acknowledged and thought to be associated with fish batch, husbandry, laboratory practices, and several methodological aspects. These include sample collection and storage, VTG quantification, data handling, and the benchmarks used for data acceptability. Information gathered in the survey provides a basis for improving and harmonizing the measurement of VTG in fish, and an opportunity to reassess the suitability of current acceptability criteria in test guidelines.


Asunto(s)
Vitelogeninas , Contaminantes Químicos del Agua , Animales , Vitelogeninas/metabolismo , Laboratorios , Peces/metabolismo , Estrógenos/metabolismo , Sistema Endocrino , Contaminantes Químicos del Agua/análisis
4.
Ecotoxicol Environ Saf ; 266: 115563, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37827093

RESUMEN

Vitellogenin (VTG), a biomarker for endocrine activity, is a mechanistic component of the regulatory assessment of potential endocrine-disrupting properties of chemicals. This review of VTG data is based on changes reported for 106 substances in standard fish species. High intra-study and inter-laboratory variability in VTG concentrations was confirmed, as well as discrepancies in interpretation of results based on large differences between fish in the dilution water versus solvent control, or due to the presence of outlier measurements. VTG responses in fish were ranked against predictions for estrogen receptor agonist activity and aromatase inhibition from bioactivity model output and ToxCast in vitro assay results, respectively. These endocrine mechanisms explained most of the VTG responses in the absence of systemic toxicity, the magnitude of the VTG response being proportional to the in vitro potency. Interpretation of the VTG data was sometimes confounded by an alternative endocrine mechanism of action. There was evidence for both false positive and negative responses for VTG synthesis, but overall, it was rare for substances without endocrine activity in vitro to cause a concentration-dependent VTG response in fish in the absence of systemic toxicity. To increase confidence in the VTG results, we recommend improvements in the VTG measurement methodologies and greater transparency in reporting of VTG data (including quality control criteria for assay performance). This review supports the application of New Approach Methodologies (NAMs) by demonstrating that endocrine activity in vitro from mammalian cell lines is predictive for in vivo VTG response in fish, suggesting that in vitro mechanistic data could be used more broadly in decision-making to help reduce animal testing.


Asunto(s)
Disruptores Endocrinos , Contaminantes Químicos del Agua , Animales , Vitelogeninas/metabolismo , Peces/metabolismo , Estrógenos/metabolismo , Disruptores Endocrinos/toxicidad , Disruptores Endocrinos/metabolismo , Contaminantes Químicos del Agua/análisis , Mamíferos/metabolismo
5.
Rev Environ Contam Toxicol ; 245: 65-127, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29119384

RESUMEN

Tributyltin (TBT) has been recognized as an endocrine disrupting chemical (EDC) for several decades. However, only in the last decade, was its primary endocrine mechanism of action (MeOA) elucidated-interactions with the nuclear retinoid-X receptor (RXR), peroxisome proliferator-activated receptor γ (PPARγ), and their heterodimers. This molecular initiating event (MIE) alters a range of reproductive, developmental, and metabolic pathways at the organism level. It is noteworthy that a variety of MeOAs have been proposed over the years for the observed endocrine-type effects of TBT; however, convincing data for the MIE was provided only recently and now several researchers have confirmed and refined the information on this MeOA. One of the most important lessons learned from years of research on TBT concerns apparent species sensitivity. Several aspects such as the rates of uptake and elimination, chemical potency, and metabolic capacity are all important for identifying the most sensitive species for a given chemical, including EDCs. For TBT, much of this was discovered by trial and error, hence important relationships and important sensitive taxa were not identified until several decades after its introduction to the environment. As recognized for many years, TBT-induced responses are known to occur at very low concentrations for molluscs, a fact that has more recently also been observed in fish species. This review explores the MeOA and effects of TBT in different species (aquatic molluscs and other invertebrates, fish, amphibians, birds, and mammals) according to the OECD Conceptual Framework for Endocrine Disruptor Testing and Assessment (CFEDTA). The information gathered on biological effects that are relevant for populations of aquatic animals was used to construct Species Sensitivity Distributions (SSDs) based on No Observed Effect Concentrations (NOECs) and Lowest Observed Effect Concentrations (LOECs). Fish appear at the lower end of these distributions, showing that they are as sensitive as molluscs, and for some species, even more sensitive. Concentrations in the range of 1 ng/L for water exposure (10 ng/g for whole-body burden) have been shown to elicit endocrine-type responses, whereas mortality occurs at water concentrations ten times higher. Current screening and assessment methodologies as compiled in the OECD CFEDTA are able to identify TBT as a potent endocrine disruptor with a high environmental risk for the original use pattern. If those approaches had been available when TBT was introduced to the market, it is likely that its use would have been regulated sooner, thus avoiding the detrimental effects on marine gastropod populations and communities as documented over several decades.


Asunto(s)
Ecología/tendencias , Disruptores Endocrinos/toxicidad , Exposición a Riesgos Ambientales/análisis , Compuestos de Trialquiltina/toxicidad , Animales , Disruptores Endocrinos/análisis , Disruptores Endocrinos/metabolismo , Exposición a Riesgos Ambientales/efectos adversos , Guías como Asunto , Humanos , Agencias Internacionales , Medición de Riesgo , Pruebas de Toxicidad , Compuestos de Trialquiltina/análisis , Compuestos de Trialquiltina/metabolismo
6.
Ecotoxicology ; 26(3): 370-382, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28168557

RESUMEN

The Organisation for Economic Cooperation and Development (OECD) provides several standard test methods for the environmental hazard assessment of chemicals, mainly based on primary producers, arthropods, and fish. In April 2016, two new test guidelines with two mollusc species representing different reproductive strategies were approved by OECD member countries. One test guideline describes a 28-day reproduction test with the parthenogenetic New Zealand mudsnail Potamopyrgus antipodarum. The main endpoint of the test is reproduction, reflected by the embryo number in the brood pouch per female. The development of a new OECD test guideline involves several phases including inter-laboratory validation studies to demonstrate the robustness of the proposed test design and the reproducibility of the test results. Therefore, a ring test of the reproduction test with P. antipodarum was conducted including eight laboratories with the test substances trenbolone and prochloraz and results are presented here. Most laboratories could meet test validity criteria, thus demonstrating the robustness of the proposed test protocol. Trenbolone did not have an effect on the reproduction of the snails at the tested concentration range (nominal: 10-1000 ng/L). For prochloraz, laboratories produced similar EC10 and NOEC values, showing the inter-laboratory reproducibility of results. The average EC10 and NOEC values for reproduction (with coefficient of variation) were 26.2 µg/L (61.7%) and 29.7 µg/L (32.9%), respectively. This ring test shows that the mudsnail reproduction test is a well-suited tool for use in the chronic aquatic hazard and risk assessment of chemicals.


Asunto(s)
Monitoreo del Ambiente/métodos , Guías como Asunto , Imidazoles/toxicidad , Organización para la Cooperación y el Desarrollo Económico , Caracoles/fisiología , Pruebas de Toxicidad/estadística & datos numéricos , Acetato de Trembolona/toxicidad , Contaminantes Químicos del Agua/toxicidad , Anabolizantes , Animales , Disruptores Endocrinos , Monitoreo del Ambiente/normas , Femenino , Fungicidas Industriales/toxicidad , Nueva Zelanda , Reproducibilidad de los Resultados , Reproducción/efectos de los fármacos , Medición de Riesgo/métodos , Medición de Riesgo/normas
7.
Regul Toxicol Pharmacol ; 81: 47-56, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27461040

RESUMEN

This paper presents the results from two ring-tests addressing the feasibility, robustness and reproducibility of a reproduction toxicity test with the freshwater gastropod Lymnaea stagnalis (RENILYS strain). Sixteen laboratories (from inexperienced to expert laboratories in mollusc testing) from nine countries participated in these ring-tests. Survival and reproduction were evaluated in L. stagnalis exposed to cadmium, tributyltin, prochloraz and trenbolone according to an OECD draft Test Guideline. In total, 49 datasets were analysed to assess the practicability of the proposed experimental protocol, and to estimate the between-laboratory reproducibility of toxicity endpoint values. The statistical analysis of count data (number of clutches or eggs per individual-day) leading to ECx estimation was specifically developed and automated through a free web-interface. Based on a complementary statistical analysis, the optimal test duration was established and the most sensitive and cost-effective reproduction toxicity endpoint was identified, to be used as the core endpoint. This validation process and the resulting optimized protocol were used to consolidate the OECD Test Guideline for the evaluation of reproductive effects of chemicals in L. stagnalis.


Asunto(s)
Lymnaea/efectos de los fármacos , Proyectos de Investigación , Pruebas de Toxicidad/métodos , Contaminantes Químicos del Agua/toxicidad , Animales , Cloruro de Cadmio/toxicidad , Tamaño de la Nidada/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Estudios de Factibilidad , Adhesión a Directriz , Guías como Asunto , Imidazoles/toxicidad , Modelos Estadísticos , Óvulo/efectos de los fármacos , Análisis de Regresión , Reproducibilidad de los Resultados , Reproducción/efectos de los fármacos , Proyectos de Investigación/normas , Medición de Riesgo , Factores de Tiempo , Pruebas de Toxicidad/normas , Acetato de Trembolona/toxicidad , Compuestos de Trialquiltina/toxicidad
8.
Ecotoxicol Environ Saf ; 115: 272-8, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25728359

RESUMEN

To optimize their efficacy, some insecticides used for mosquito control are introduced into aquatic ecosystems where mosquito larvae develop (marshes, ponds, sanitation devices) and cannot escape from the treated water. However, this raises the question of possible effects of mosquito larvicides on non-target aquatic species. Bacillus thuringiensis var. israelensis (Bti), which is well-known for its selectivity for Nematocera dipterans, is widely used for mosquito control all over the world. Spinosad, a mixture of spinosyns A and D known as fermentation products of a soil actinomycete (Saccharopolyspora spinosa), is a biological neurotoxic insecticide with a broader action spectrum. It is a candidate larvicide for mosquito control, but some studies showed that it may be toxic to beneficial or non-target species, including non-biting midges. The present study was therefore undertaken to assess the impact of Bti and spinosad on natural populations of Polypedilum nubifer (Skuse) and Tanytarsus curticornis Kieffer (Diptera: Chironomidae) in field enclosures implemented in Mediterranean coastal wetlands. Unlike Bti, spinosad had a strong lethal effect on P. nubifer and seems to affect T. curticornis at presumed recommended rates for field application. Differences in the sensitivity of these two species to spinosad confirm that population dynamics need to be known for a proper assessment of the risk encountered by chironomids in wetlands where larvicide-based mosquito control occurs.


Asunto(s)
Bacillus thuringiensis , Chironomidae/efectos de los fármacos , Insecticidas/toxicidad , Macrólidos/toxicidad , Control de Mosquitos , Animales , Chironomidae/crecimiento & desarrollo , Combinación de Medicamentos , Dinámica Poblacional , Humedales
9.
Ecotoxicology ; 24(9): 1933-46, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26311171

RESUMEN

Higher-tier ecological risk assessment of chemicals often relies upon studies in dynamic and/or static mesocosms. Physico-chemical and hydrological properties of each type of mesocosm result in specific chemicals fate, community functioning, and potential recovery. In the present study, macroinvertebrate abundance- and biomass-weighted biological and ecological trait matrices were used to assess the effects of a dithiocarbamate fungicide, thiram (35 and 170 µg l(-1)), and of a petroleum middle distillate (0.01, 0.4, 2 and 20 mg l(-1)) in outdoor stream and pond mesocosms. Trait sensitivity was characterized using functional diversity indices and trait modality distributions to assess the influence of the type of experimental systems and the ability of traits to disentangle chemical-induced effects from temporal and stochastic variations. In addition, leaf litter breakdown was used as an integrative functional endpoint. Regardless to the substance, treatments had a direct effect on the functional structure of benthic macroinvertebrate communities in streams but not in ponds, suggesting that global functional responses to chemicals are system-specific. Although both substances had an effect in streams, differences were noticed in the nature of the affected traits suggesting that chemical mode of action plays a role in functional alterations. This was illustrated by the link between negative effects of chemical exposure on detritivorous taxa and reduced litter breakdown rate in streams. Therefore, characterisation of macroinvertebrate biological traits associated with the measurement of a functional process such as litter breakdown may provide a comprehensive understanding of the effects occurring in mesocosms exposed to organic chemicals.


Asunto(s)
Ecosistema , Fungicidas Industriales/toxicidad , Invertebrados/efectos de los fármacos , Contaminación por Petróleo/efectos adversos , Tiram/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Francia , Invertebrados/fisiología , Hojas de la Planta/química , Estanques/análisis , Ríos
10.
Ecotoxicology ; 24(9): 1976-95, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26385344

RESUMEN

Higher-tier ecological risk assessment (ERA) in mesocosms is commonly performed in lotic or lentic experimental systems. These systems differ in their physico-chemical and hydrological properties, leading to differences in chemical fate, community characteristics and potential recovery. This raises the issue of the relevance and sensitivity of community-level endpoints in different types of mesocosms. In this study, macroinvertebrate abundance and biomass estimates were used to assess the effects of a dithiocarbamate fungicide, thiram (35 and 170 µg l(-1)), and a petroleum middle distillate (PMD; 0.01, 0.4, 2 and 20 mg l(-1)) in outdoor stream and pond mesocosms. Streams were continuously treated during 3 weeks followed by a 2-month long post-treatment period. Ponds were treated weekly for 4 weeks, followed by a 10-month long post-treatment period. Taxonomic structure of macroinvertebrate communities was characterized using the α, ß and γ components of taxa richness, Shannon and Gini-Simpson indices. Computations were based either on abundance or biomass data. Results clearly highlighted that the effects of chemicals depended on the exposure regime (for thiram) and type of system (for the PMD). Causes of the differences between streams and ponds in the magnitude and nature of effects include differential sensitivity of taxa dwelling in lentic and lotic systems and the influence of hydrology (e.g., drift from upstream) and mesocosm connectivity on recovery dynamics. This study also showed complementarities in the use of both types of mesocosms to improve the characterization of chemical effects on communities in ERA.


Asunto(s)
Ecosistema , Fungicidas Industriales/toxicidad , Invertebrados/efectos de los fármacos , Contaminación por Petróleo/efectos adversos , Tiram/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Francia , Invertebrados/fisiología , Estanques/análisis , Ríos
11.
Ecotoxicology ; 24(4): 760-9, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25663318

RESUMEN

Mesocosm experiments that study the ecological impact of chemicals are often analysed using the multivariate method 'Principal Response Curves' (PRCs). Recently, the extension of generalised linear models (GLMs) to multivariate data was introduced as a tool to analyse community data in ecology. Moreover, data aggregation techniques that can be analysed with univariate statistics have been proposed. The aim of this study was to compare their performance. We compiled macroinvertebrate abundance datasets of mesocosm experiments designed for studying the effect of various organic chemicals, mainly pesticides, and re-analysed them. GLMs for multivariate data and selected aggregated endpoints were compared to PRCs regarding their performance and potential to identify affected taxa. In addition, we analysed the inter-replicate variability encountered in the studies. Mesocosm experiments characterised by a higher taxa richness of the community and/or lower taxonomic resolution showed a greater inter-replicate variability, whereas variability decreased the more zero counts were encountered in the samples. GLMs for multivariate data performed equally well as PRCs regarding the community response. However, compared to first axis PRCs, GLMs provided a better indication of individual taxa responding to treatments, as separate models are fitted to each taxon. Data aggregation methods performed considerably poorer compared to PRCs. Multivariate community data, which are generated during mesocosm experiments, should be analysed using multivariate methods to reveal treatment-related community-level responses. GLMs for multivariate data are an alternative to the widely used PRCs.


Asunto(s)
Exposición a Riesgos Ambientales , Monitoreo del Ambiente/métodos , Invertebrados/efectos de los fármacos , Compuestos Orgánicos/toxicidad , Plaguicidas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Modelos Lineales , Modelos Biológicos , Análisis Multivariante
12.
Regul Toxicol Pharmacol ; 70(3): 605-14, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25220624

RESUMEN

The OECD test guideline development program has been extended in 2011 to establish a partial life-cycle protocol for assessing the reproductive toxicity of chemicals to several mollusk species, including the great pond snail Lymnaea stagnalis. In this paper, we summarize the standard draft protocol for a reproduction test with this species, and present inter-comparison results obtained in a 56-day prevalidation ring-test using this protocol. Seven European laboratories performed semi-static tests with cultured snails of the strain Renilys® exposed to nominal concentrations of cadmium chloride (from 53 to 608µgCdL(-1)). Cd concentrations in test solutions were analytically determined to confirm accuracy in the metal exposure concentrations in all laboratories. Physico-chemical and biological validity criteria (namely dissolved oxygen content >60% ASV, water temperature 20±1°C, control snail survival >80% and control snail fecundity >8 egg-masses per snail over the test period) were met in all laboratories which consistently demonstrated the reproductive toxicity of Cd in snails using the proposed draft protocol. Effect concentrations for fecundity after 56days were reproducible between laboratories (68

Asunto(s)
Cadmio/toxicidad , Lymnaea/efectos de los fármacos , Animales , Guías como Asunto , Lymnaea/fisiología , Organización para la Cooperación y el Desarrollo Económico , Reproducibilidad de los Resultados , Reproducción/efectos de los fármacos , Pruebas de Toxicidad/métodos
13.
Environ Toxicol Chem ; 42(4): 757-777, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36789969

RESUMEN

Multiple in vivo test guidelines focusing on the estrogen, androgen, thyroid, and steroidogenesis pathways have been developed and validated for mammals, amphibians, or fish. However, these tests are resource-intensive and often use a large number of laboratory animals. Developing alternatives for in vivo tests is consistent with the replacement, reduction, and refinement principles for animal welfare considerations, which are supported by increasing mandates to move toward an "animal-free" testing paradigm worldwide. New approach methodologies (NAMs) hold great promise to identify molecular, cellular, and tissue changes that can be used to predict effects reliably and more efficiently at the individual level (and potentially on populations) while reducing the number of animals used in (eco)toxicological testing for endocrine disruption. In a collaborative effort, experts from government, academia, and industry met in 2020 to discuss the current challenges of testing for endocrine activity assessment for fish and amphibians. Continuing this cross-sector initiative, our review focuses on the current state of the science regarding the use of NAMs to identify chemical-induced endocrine effects. The present study highlights the challenges of using NAMs for safety assessment and what work is needed to reduce their uncertainties and increase their acceptance in regulatory processes. We have reviewed the current NAMs available for endocrine activity assessment including in silico, in vitro, and eleutheroembryo models. New approach methodologies can be integrated as part of a weight-of-evidence approach for hazard or risk assessment using the adverse outcome pathway framework. The development and utilization of NAMs not only allows for replacement, reduction, and refinement of animal testing but can also provide robust and fit-for-purpose methods to identify chemicals acting via endocrine mechanisms. Environ Toxicol Chem 2023;42:757-777. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Disruptores Endocrinos , Animales , Disruptores Endocrinos/toxicidad , Disruptores Endocrinos/análisis , Peces , Ecotoxicología , Anfibios , Sistema Endocrino , Medición de Riesgo , Mamíferos
14.
Integr Environ Assess Manag ; 19(4): 1089-1109, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36597818

RESUMEN

The toxicity and ecotoxicity of pesticide active ingredients are evaluated by a number of standardized test methods using vertebrate animals. These standard test methods are required under various regulatory programs for the registration of pesticides. Over the past two decades, additional test methods have been developed with endpoints that are responsive to endocrine activity and subsequent adverse effects. This article examines the available test methods and their endpoints that are relevant to an assessment of endocrine-disrupting properties of pesticides. Furthermore, the article highlights how weight-of-evidence approaches should be applied to determine whether an adverse response in (eco)toxicity tests is caused by an endocrine mechanism of action. The large number of endpoints in the current testing paradigms for pesticides make it unlikely that endocrine activity and adversity is being overlooked. Integr Environ Assess Manag 2023;19:1089-1109. © 2023 Bayer CropScience and The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Asunto(s)
Disruptores Endocrinos , Plaguicidas , Animales , Animales Salvajes , Plaguicidas/toxicidad , Disruptores Endocrinos/toxicidad , Medición de Riesgo/métodos , Vertebrados , Ecotoxicología/métodos
15.
Ecotoxicology ; 21(8): 2222-34, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22814884

RESUMEN

Due to their ability to explore whole genome response to drugs and stressors, omics-based approaches are widely used in toxicology and ecotoxicology, and identified as powerful tools for future ecological risk assessment and environmental monitoring programs. Understanding the long-term effects of contaminants may indeed benefit from the coupling of genomics and eco-evolutionary hypotheses. Next-generation sequencing provides a new way to investigate pollutants impact, by targeting early responses, screening chemicals, and directly quantifying gene expression, even in organisms without reference genome. Lymnaea stagnalis is a freshwater mollusk in which access to genomic resources is critical for many scientific issues, especially in ecotoxicology. We used 454-pyrosequencing to obtain new transcriptomic resources in L. stagnalis and to preliminarily explore gene expression response to a redox-cycling pesticide, diquat. We obtained 151,967 and 128,945 high-quality reads from control and diquat-exposed individuals, respectively. Sequence assembly provided 141,999 contigs, of which 124,387 were singletons. BlastX search revealed significant match for 34.6 % of the contigs (21.2 % protein hits). KEGG annotation showed a predominance of hits with genes involved in energy metabolism and circulatory system, and revealed more than 400 putative genes involved in oxidative stress, cellular/molecular stress and signaling pathways, apoptosis, and metabolism of xenobiotics. Results also suggest that diquat may have a great diversity of molecular effects. Moreover, new genetic markers (putative SNPs) were discovered. We also created a Ensembl-like web-tool for data-mining ( http://genotoul-contigbrowser.toulouse.inra.fr:9095/Lymnaea_stagnalis/index.html ). This resource is expected to be relevant for any genomic approach aimed at understanding the molecular basis of physiological and evolutionary responses to environmental stress in L. stagnalis.


Asunto(s)
Diquat/farmacología , Herbicidas/farmacología , Lymnaea/efectos de los fármacos , Lymnaea/genética , Transcriptoma , Animales , Bases de Datos Genéticas , Etiquetas de Secuencia Expresada , Perfilación de la Expresión Génica , Análisis de Secuencia de ADN
16.
Ecotoxicol Environ Saf ; 74(5): 1122-30, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21592573

RESUMEN

Bacillus thuringiensis var. israelensis (Bti) is commonly used for selective control of larval populations of mosquitoes in coastal wetlands. A two year-study was implemented to investigate whether repeated treatments with Bti applied either as a liquid (VectoBac® 12AS) or a water-dispersible granule (VectoBac® WG) formulation may affect the abundance and diversity of non-target aquatic invertebrates in saltmarsh pools. Taxonomic composition of the invertebrate communities was typical of brackishwater intermittent ecosystems, with a dominance of annelids, crustaceans and nematocerans. Conditions were contrasted between the two years of the survey, both in terms of annual cumulative rainfall and rainfall distribution throughout the year. As a consequence, the hydroperiod and some other environmental characteristics associated with pool drying played a major role in the dynamics of the invertebrate community. In summer 2006, pool drying reduced the abundance of the polychaete worm Nereis diversicolor, of the amphipod crustacean Corophium volutator and of chironomid larvae. These taxa were able to recolonize rapidly the pools after flooding in September 2006. In 2007, rainfall was more regularly distributed across the year, and the pools did not get dry. Hydrozoans, Chironomini and Orthocladiinae larvae, and oligochaetes were more abundant in treated than in control pools, especially in VectoBac® WG-treated pools. No adverse effects of the treatments were shown on the abundance of N. diversicolor, C. volutator and midge larvae, suggesting that the availability of these food sources for birds was not negatively affected by Bti applications. It is concluded that, as currently performed in Western France coastal wetlands, land-based treatments of saltmarsh pools for larval mosquito control with Bti, used either as VectoBac® 12AS or VectoBac® WG, did not adversely impact non-target aquatic invertebrate communities.


Asunto(s)
Bacillus thuringiensis/patogenicidad , Invertebrados/microbiología , Control Biológico de Vectores/métodos , Humedales , Anfípodos/crecimiento & desarrollo , Anfípodos/microbiología , Animales , Biodiversidad , Chironomidae/crecimiento & desarrollo , Chironomidae/microbiología , Ecosistema , Francia , Invertebrados/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Larva/microbiología , Poliquetos/crecimiento & desarrollo , Poliquetos/microbiología , Agua de Mar/química , Agua de Mar/microbiología
17.
Ecotoxicol Environ Saf ; 74(4): 800-10, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21497397

RESUMEN

Chitobiase is involved in exoskeleton degradation and recycling during the moulting process in arthropods. In aquatic species, the moulting fluid is released into the aqueous environment, and chitobiase activity present therein can be used to follow the dynamics of arthropod populations. Here, chitobiase activity was used for monitoring the impact of mosquito candidate larvicides on Daphnia pulex and Daphnia magna under laboratory conditions. Both species were exposed to spinosad (2, 4, 8 µg L(-1)) and diflubenzuron (0.2, 0.4, 0.8 µg L(-1)) for 14 days. Bacillus thuringiensis var. israelensis (Bti; 0.25, 0.5, 1 µL L(-1)) was used as the reference larvicide. Chitobiase activity, adult survival, individual growth and fecundity, expressed as the number of neonates produced, were measured every 2 days. Average Exposure Concentrations of spinosad were ten-fold lower than the nominal concentrations, whereas only a slight deviation was observed for diflubenzuron. In contrast to Bti, spinosad and diflubenzuron significantly affected both species in terms of adult survival, and production of neonates. As compared to D. pulex, D. magna was more severely affected by diflubenzuron, at low and medium concentrations, with reduced adult growth and much lower chitobiase activity. Chitobiase activity was positively correlated with the individual body length, number of neonates produced between two consecutive observation dates, and number of females and neonates. In addition, the significant positive correlations between chitobiase activity measured on the last sampling date before the first emission of neonates and the cumulative number of neonates produced during the whole observation period strongly support the potential of the activity of this chitinolytic enzyme as a proxy for assessing the dynamics of arthropod populations exposed to larvicides used for mosquito control.


Asunto(s)
Acetilglucosaminidasa/metabolismo , Daphnia/efectos de los fármacos , Diflubenzurón/toxicidad , Insecticidas/toxicidad , Macrólidos/toxicidad , Adulto , Animales , Bacillus thuringiensis , Biomarcadores/metabolismo , Daphnia/crecimiento & desarrollo , Combinación de Medicamentos , Femenino , Humanos , Recién Nacido , Reproducción/efectos de los fármacos , Medición de Riesgo , Contaminantes Químicos del Agua
18.
Environ Toxicol Chem ; 40(8): 2135-2144, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33939850

RESUMEN

The amphibian metamorphosis assay (AMA; US Environmental Protection Agency [USEPA] test guideline 890.1100 and Organisation for Economic Co-Operation and Development test guideline 231) has been used for more than a decade to assess the potential thyroid-mediated endocrine activity of chemicals. In 2013, in the context of the Endocrine Disruptor Screening Program of the USEPA, a Scientific Advisory Panel reviewed the results from 18 studies and recommended changes to the AMA test guideline, including a modification to a fixed-stage design rather than a fixed-time (i.e., 21-d) design. We describe an extended test design for the AMA (or EAMA) that includes thyroid histopathology and time to metamorphosis (Nieuwkoop-Faber [NF] stage 62), to address both the issues with the fixed-time design and the specific question of thyroid-mediated adversity in a shorter assay than the larval amphibian growth and development assay (LAGDA; Organisation for Economic Co-Operation and Development test guideline 241), using fewer animals and resources. A demonstration study was conducted with the EAMA (up to NF stage 58) using sodium perchlorate. Data analyses and interpretation of the fixed-stage design of the EAMA are more straightforward than the fixed-time design because the fixed-stage design avoids confounded morphometric measurements and thyroid histopathology caused by varying developmental stages at test termination. It also results in greater statistical power to detect metamorphic delays than the fixed-time design. By preferentially extending the AMA to NF stage 62, suitable data can be produced to evaluate thyroid-mediated adversity and preclude the need to perform a LAGDA for thyroid mode of action analysis. The LAGDA remains of further interest should investigations of longer term effects related to sexual development modulated though the hypothalamus-pituitary-gonadal axis be necessary. However, reproduction assessment or life cycle testing is currently not addressed in the LAGDA study design. This is better addressed by higher tier studies in fish, which should then include specific thyroid-related endpoints. Environ Toxicol Chem 2021;40:2135-2144. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Disruptores Endocrinos , Animales , Disruptores Endocrinos/toxicidad , Metamorfosis Biológica , Glándula Tiroides , Xenopus laevis
19.
Ecotoxicology ; 19(7): 1224-37, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20552396

RESUMEN

Because exposure to toxicants not only results in mortality but also in multiple sublethal effects, the use of life-table data appears particularly suitable to assess global effects on exposed populations. The present study uses a life table response approach to assess population-level effects of two insecticides used against mosquito larvae, spinosad (8 µg/l) and Bacillus thuringiensis var. israelensis (Bti, 0.5 µl/l), on two non target species, Daphnia pulex and Daphnia magna (Crustacea: Cladocera), under laboratory versus field microcosms conditions. Population growth rates were inferred from life table data and Leslie matrices under a model with resource limitation (ceiling). These were further used to estimate population risks of extinction under each tested condition, using stochastic simulations. In laboratory conditions, analyses performed for each species confirmed the significant negative effect of spinosad on survival, mean time at death, and fecundity as compared to controls and Bti-treated groups; for both species, population growth rate λ was lower under exposure to spinosad. In field microcosms, 2 days after larvicide application, differences in population growth rates were observed between spinosad exposure conditions, and control and Bti exposure conditions. Simulations performed on spinosad-exposed organisms led to population extinction (minimum abundance = 0, extinction risk = 1), and this was extremely rapid (time to quasi-extinction = 4.1 one-week long steps, i.e. one month). Finally, D. magna was shown to be more sensitive than D. pulex to spinosad in the laboratory, and the effects were also detectable through field population demographic simulations.


Asunto(s)
Daphnia/efectos de los fármacos , Insecticidas/toxicidad , Macrólidos/toxicidad , Animales , Bacillus thuringiensis , Daphnia/fisiología , Combinación de Medicamentos , Femenino , Larva/efectos de los fármacos , Larva/fisiología , Tablas de Vida , Control de Mosquitos , Crecimiento Demográfico , Procesos Estocásticos , Análisis de Supervivencia
20.
Ecotoxicology ; 19(7): 1312-21, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20623335

RESUMEN

Long-term effects of endocrine disruptors (EDs) on aquatic invertebrates remain difficult to assess, mainly due to the lack of appropriate sensitive toxicity test methods and relevant data analysis procedures. This study aimed at identifying windows of sensitivity to EDs along the life-cycle of the freshwater snail Lymnaea stagnalis, a candidate species for the development of forthcoming test guidelines. Juveniles, sub-adults, young adults and adults were exposed for 21 days to the fungicide vinclozolin (VZ). Survival, growth, onset of reproduction, fertility and fecundity were monitored weekly. Data were analyzed using standard statistical analysis procedures and mixed-effect models. No deleterious effect on survival and growth occurred in snails exposed to VZ at environmentally relevant concentrations. A significant impairment of the male function occurred in young adults, leading to infertility at concentrations exceeding 0.025 µg/L. Furthermore, fecundity was impaired in adults exposed to concentrations exceeding 25 µg/L. Biological responses depended on VZ concentration, exposure duration and on their interaction, leading to complex response patterns. The use of a standard statistical approach to analyze those data led to underestimation of VZ effects on reproduction, whereas effects could reliably be analyzed by mixed-effect models. L. stagnalis may be among the most sensitive invertebrate species to VZ, a 21-day reproduction test allowing the detection of deleterious effects at environmentally relevant concentrations of the fungicide. These results thus reinforce the relevance of L. stagnalis as a good candidate species for the development of guidelines devoted to the risk assessment of EDs.


Asunto(s)
Antagonistas de Andrógenos/toxicidad , Fungicidas Industriales/toxicidad , Lymnaea/efectos de los fármacos , Oxazoles/toxicidad , Animales , Ecotoxicología , Femenino , Agua Dulce , Estadios del Ciclo de Vida , Lymnaea/crecimiento & desarrollo , Masculino , Reproducción , Medición de Riesgo , Pruebas de Toxicidad , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA