Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 21(22)2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33233525

RESUMEN

We investigated the synthesis of N-docosahexaenoylethanolamine (synaptamide) in neuronal cells from unesterified docosahexaenoic acid (DHA) or DHA-lysophosphatidylcholine (DHA-lysoPC), the two major lipid forms that deliver DHA to the brain, in order to understand the formation of this neurotrophic and neuroprotective metabolite of DHA in the brain. Both substrates were taken up in Neuro2A cells and metabolized to N-docosahexaenoylphosphatidylethanolamine (NDoPE) and synaptamide in a time- and concentration-dependent manner, but unesterified DHA was 1.5 to 2.4 times more effective than DHA-lysoPC at equimolar concentrations. The plasmalogen NDoPE (pNDoPE) amounted more than 80% of NDoPE produced from DHA or DHA-lysoPC, with 16-carbon-pNDoPE being the most abundant species. Inhibition of N-acylphosphatidylethanolamine-phospholipase D (NAPE-PLD) by hexachlorophene or bithionol significantly decreased the synaptamide production, indicating that synaptamide synthesis is mediated at least in part via NDoPE hydrolysis. NDoPE formation occurred much more rapidly than synaptamide production, indicating a precursor-product relationship. Although NDoPE is an intermediate for synaptamide biosynthesis, only about 1% of newly synthesized NDoPE was converted to synaptamide, possibly suggesting additional biological function of NDoPE, particularly for pNDoPE, which is the major form of NDoPE produced.


Asunto(s)
Ácidos Araquidónicos/biosíntesis , Ácidos Docosahexaenoicos/metabolismo , Endocannabinoides/biosíntesis , Etanolaminas/metabolismo , Lisofosfatidilcolinas/metabolismo , Neuronas/metabolismo , Animales , Ácidos Araquidónicos/antagonistas & inhibidores , Ácidos Araquidónicos/aislamiento & purificación , Bitionol/farmacología , Isótopos de Carbono , Línea Celular Tumoral , Cromatografía Liquida , Endocannabinoides/antagonistas & inhibidores , Endocannabinoides/aislamiento & purificación , Etanolaminas/antagonistas & inhibidores , Etanolaminas/aislamiento & purificación , Hexaclorofeno/farmacología , Cinética , Ratones , Neuronas/citología , Neuronas/efectos de los fármacos , Plasmalógenos/antagonistas & inhibidores , Plasmalógenos/biosíntesis , Plasmalógenos/aislamiento & purificación , Alcamidas Poliinsaturadas/antagonistas & inhibidores , Alcamidas Poliinsaturadas/aislamiento & purificación , Espectrometría de Masas en Tándem
2.
Int J Mol Sci ; 20(17)2019 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-31480215

RESUMEN

The mammalian brain is enriched with lipids that serve as energy catalyzers or secondary messengers of essential signaling pathways. Docosahexaenoic acid (DHA) is an omega-3 fatty acid synthesized de novo at low levels in humans, an endogenous supply from its precursors, and is mainly incorporated from nutrition, an exogeneous supply. Decreased levels of DHA have been reported in the brains of patients with neurodegenerative diseases. Preventing this decrease or supplementing the brain with DHA has been considered as a therapy for the DHA brain deficiency that could be linked with neuronal death or neurodegeneration. The mammalian brain has, however, a mechanism of compensation for loss of neurons in the brain: neurogenesis, the birth of neurons from neural stem cells. In adulthood, neurogenesis is still present, although at a slower rate and with low efficiency, where most of the newly born neurons die. Neural stem/progenitor cells (NSPCs) have been shown to require lipids for proper metabolism for proliferation maintenance and neurogenesis induction. Recent studies have focused on the effects of these essential lipids on the neurobiology of NSPCs. This review aimed to introduce the possible use of DHA to impact NSPC fate-decision as a therapy for neurodegenerative diseases.


Asunto(s)
Células Madre Adultas/citología , Linaje de la Célula/efectos de los fármacos , Ácidos Docosahexaenoicos/farmacología , Células-Madre Neurales/citología , Células Madre Adultas/efectos de los fármacos , Células Madre Adultas/metabolismo , Animales , Humanos , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Neurogénesis/efectos de los fármacos , Fármacos Neuroprotectores/farmacología
3.
Diabetologia ; 61(3): 688-699, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29299636

RESUMEN

AIMS/HYPOTHESIS: Oxidative stress is involved in the pathophysiology of insulin resistance and its progression towards type 2 diabetes. The peroxidation of n-3 polyunsaturated fatty acids produces 4-hydroxy-2-hexenal (4-HHE), a lipid aldehyde with potent electrophilic properties able to interfere with many pathophysiological processes. The aim of the present study was to investigate the role of 4-HHE in the development of insulin resistance. METHODS: 4-HHE concentration was measured in plasma from humans and rats by GC-MS. Insulin resistance was estimated in healthy rats after administration of 4-HHE using hyperinsulinaemic-euglycaemic clamps. In muscle cells, glucose uptake was measured using 2-deoxy-D-glucose and signalling pathways were investigated by western blotting. Intracellular glutathione was measured using a fluorimetric assay kit and boosted using 1,2-dithiole-3-thione (D3T). RESULTS: Circulating levels of 4-HHE in type 2 diabetic humans and a rat model of diabetes (obese Zucker diabetic fatty rats), were twice those in their non-diabetic counterparts (33 vs 14 nmol/l, p < 0.001), and positively correlated with blood glucose levels. During hyperinsulinaemic-euglycaemic clamps in rats, acute intravenous injection of 4-HHE significantly altered whole-body insulin sensitivity and decreased glucose infusion rate (24.2 vs 9.9 mg kg-1 min-1, p < 0.001). In vitro, 4-HHE impaired insulin-stimulated glucose uptake and signalling (protein kinase B/Akt and IRS1) in L6 muscle cells. Insulin-induced glucose uptake was reduced from 186 to 141.9 pmol mg-1 min-1 (p < 0.05). 4-HHE induced carbonylation of cell proteins and reduced glutathione concentration from 6.3 to 4.5 nmol/mg protein. Increasing intracellular glutathione pools using D3T prevented 4-HHE-induced carbonyl stress and insulin resistance. CONCLUSIONS/INTERPRETATION: 4-HHE is produced in type 2 diabetic humans and Zucker diabetic fatty rats and blunts insulin action in skeletal muscle. 4-HHE therefore plays a causal role in the pathophysiology of type 2 diabetes and might constitute a potential therapeutic target to taper oxidative stress-induced insulin resistance.


Asunto(s)
Aldehídos/farmacología , Resistencia a la Insulina/fisiología , Peroxidación de Lípido/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Adulto , Animales , Glucemia/efectos de los fármacos , Western Blotting , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/metabolismo , Ácidos Grasos Omega-3/sangre , Femenino , Cromatografía de Gases y Espectrometría de Masas , Humanos , Insulina/sangre , Insulina/farmacología , Masculino , Persona de Mediana Edad , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Zucker , Tionas/farmacología , Tiofenos/farmacología
4.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(6): 651-656, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29555597

RESUMEN

The oxygenation metabolism of arachidonic acid (ArA) has been early described in blood platelets, in particular with its conversion into the potent labile thromboxane A2 that induces platelet aggregation and vascular smooth muscle cells contraction. In addition, the primary prostaglandins D2 and E2 have been mainly reported as inhibitors of platelet function. The platelet 12-lipoxygenase (12-LOX) product, i.e. the hydroperoxide 12-HpETE, appears to stimulate platelet ArA metabolism at the level of its release from membrane phospholipids through phospholipase A2 (cPLA2) and cyclooxygenase (COX-1) activities, the first enzymes in prostanoid production cascade. Also, 12-HpETE may regulate the oxygenation of other polyunsaturated fatty acids (PUFA) by platelets, especially that of eicosapentaenoic acid (EPA). On the other hand, the reduced product of 12-HpETE, 12-HETE, is able to antagonize TxA2 action. This is even more obvious for the 12-LOX end-products from docosahexaenoic acid (DHA), 11- and 14-HDoHE. In addition, 12-HpETE plays a key role in platelet oxidative stress as observed in pathophysiological conditions, but may be regulated by DHA with a bimodal way according to its concentration. Other oxygenated products of PUFA, especially omega-3 PUFA, produced outside platelets may affect platelet functions as well.


Asunto(s)
Plaquetas/metabolismo , Ácidos Grasos Insaturados/metabolismo , Estrés Oxidativo/fisiología , Animales , Araquidonato 12-Lipooxigenasa/genética , Araquidonato 12-Lipooxigenasa/metabolismo , Plaquetas/citología , Ciclooxigenasa 1/genética , Ciclooxigenasa 1/metabolismo , Ácidos Grasos Insaturados/genética , Humanos , Oxidación-Reducción
5.
J Neuroinflammation ; 14(1): 170, 2017 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-28838312

RESUMEN

BACKGROUND: Neuroinflammatory processes are considered a double-edged sword, having both protective and detrimental effects in the brain. Microglia, the brain's resident innate immune cells, are a key component of neuroinflammatory response. There is a growing interest in developing drugs to target microglia and control neuroinflammatory processes. In this regard, docosahexaenoic acid (DHA), the brain's n-3 polyunsaturated fatty acid, is a promising molecule to regulate pro-inflammatory microglia and cytokine production. Several works reported that the bioavailability of DHA to the brain is higher when DHA is acylated to phospholipid. In this work, we analyzed the anti-inflammatory activity of DHA-phospholipid, either acetylated at the sn-1 position (AceDoPC, a stable form thought to have superior access to the brain) or acylated with palmitic acid at the sn-1 position (PC-DHA) using a lipopolysaccharide (LPS)-induced neuroinflammation model both in vitro and in vivo. METHODS: In vivo, adult C57Bl6/J mice were injected intravenously (i.v.) with either AceDoPC or PC-DHA 24 h prior to LPS (i.p.). For in vitro studies, immortalized murine microglia cells BV-2 were co-incubated with DHA forms and LPS. AceDoPC and PC-DHA effect on brain or BV-2 PUFA content was assessed by gas chromatography. LPS-induced pro-inflammatory cytokines interleukin IL-1ß, IL-6, and tumor necrosis factor (TNF) α production were measured by quantitative PCR (qPCR) or multiplex. IL-6 receptors and associated signaling pathway STAT3 were assessed by FACS analysis and western-blot in vitro. RESULTS: In vivo, a single injection of AceDoPC or PC-DHA decreased LPS-induced IL-6 production in the hippocampus of mice. This effect could be linked to their direct effect on microglia, as revealed in vitro. In addition, AceDoPC or PC-DHA reduced IL-6 receptor while only AceDoPC decreased IL-6-induced STAT3 phosphorylation. CONCLUSIONS: These results highlight the potency of administered DHA-acetylated to phospholipids-to rapidly regulate LPS-induced neuroinflammatory processes through their effect on microglia. In particular, both IL-6 production and signaling are targeted by AceDoPC in microglia.


Asunto(s)
Mediadores de Inflamación/metabolismo , Lipopolisacáridos/toxicidad , Microglía/metabolismo , Fosfatidilcolinas/uso terapéutico , Animales , Línea Celular Transformada , Colina/farmacología , Colina/uso terapéutico , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/uso terapéutico , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/patología , Mediadores de Inflamación/antagonistas & inhibidores , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/patología , Fosfatidilcolinas/farmacología , Fosfolípidos/farmacología , Fosfolípidos/uso terapéutico
6.
Biochim Biophys Acta ; 1851(4): 485-95, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25263947

RESUMEN

Numerous epidemiological studies and clinical trials have reported the health benefits of omega-3 polyunsaturated fatty acids (PUFA), including a lower risk of coronary heart diseases. This review mainly focuses on the effects of alpha-linolenic (ALA), eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids on some risk factors associated with atherothrombosis, including platelet activation, plasma lipid concentrations and oxidative modification of low-density lipoproteins (LDL). Special focus is given to the effects of marine PUFA on the formation of eicosanoids and docosanoids, and to the bioactive properties of some oxygenated metabolites of omega-3 PUFA produced by cyclooxygenases and lipoxygenases. The antioxidant effects of marine omega-3 PUFA at low concentrations and the pro-oxidant effects of DHA at high concentrations on the redox status of platelets and LDL are highlighted. Non enzymatic peroxidation end-products deriving from omega-3 PUFA such as hydroxy-hexenals, neuroketals and EPA-derived isoprostanes are also considered in relation to atherosclerosis. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance".


Asunto(s)
Aterosclerosis/tratamiento farmacológico , Fármacos Cardiovasculares/uso terapéutico , Ácidos Grasos Omega-3/uso terapéutico , Trombosis/tratamiento farmacológico , Animales , Aterosclerosis/epidemiología , Aterosclerosis/metabolismo , Fármacos Cardiovasculares/efectos adversos , Fármacos Cardiovasculares/metabolismo , Ácidos Docosahexaenoicos/uso terapéutico , Relación Dosis-Respuesta a Droga , Ácido Eicosapentaenoico/uso terapéutico , Ácidos Grasos Omega-3/efectos adversos , Ácidos Grasos Omega-3/metabolismo , Humanos , Oxidación-Reducción , Medición de Riesgo , Factores de Riesgo , Trombosis/epidemiología , Trombosis/metabolismo , Resultado del Tratamiento , Ácido alfa-Linolénico/uso terapéutico
7.
Mol Membr Biol ; 32(1): 1-10, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25865250

RESUMEN

4-Hydroxy-2-nonenal (4-HNE) is a reactive aldehyde and a lipid peroxidation product formed in biological tissues under physiological and pathological conditions. Its concentration increases with oxidative stress and induces deleterious modifications of proteins and membranes. Mitochondrial and cytosolic isoforms of creatine kinase were previously shown to be affected by 4-HNE. In the present study, we analyzed the effect of 4-HNE on mitochondrial creatine kinase, an abundant protein from the mitochondrial intermembrane space with a key role in mitochondrial physiology. We show that this effect is double: 4-HNE induces a step-wise loss of creatine kinase activity together with a fast protein aggregation. Protein-membrane interaction is affected and amyloid-like networks formed on the biomimetic membrane. These fibrils may disturb mitochondrial organisation both at the membrane and in the inter membrane space.


Asunto(s)
Aldehídos/farmacología , Forma Mitocondrial de la Creatina-Quinasa/química , Forma Mitocondrial de la Creatina-Quinasa/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Fosfolípidos/metabolismo , Aldehídos/química , Animales , Activación Enzimática , Peroxidación de Lípido , Mitocondrias , Unión Proteica , Multimerización de Proteína/efectos de los fármacos , Proteínas Recombinantes
8.
FASEB J ; 27(7): 2855-61, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23507868

RESUMEN

There is evidence that high-density lipoproteins (HDLs) may regulate platelet function, but disparate results exist regarding the effects of oxidized HDLs on platelets. The objective of our study was to determine the role of in vivo oxidized HDLs on platelet aggregation. Platelet aggregation and redox status were investigated in 5 patients with abetalipoproteinemia (ABLP) or homozygous hypobetalipoproteinemia, two rare metabolic diseases characterized by the absence of apolipoprotein B-containing lipoproteins, compared to 5 control subjects. Platelets isolated from plasma of patients with ABLP aggregated 4 to 10 times more than control platelets, depending on the agonist. By contrast, no differences in the extent of platelet aggregation were observed between ABLP platelet-rich plasma (PRP) and control PRP, suggesting the presence of a protective factor in ABLP plasma. ABLP HDLs inhibited agonist-induced platelet aggregation by binding to SR-BI, while control HDLs had no effect. On the other hand, lipoprotein-deficient plasma from patients with ABLP did not inhibit platelet aggregation. Severe oxidative stress was evidenced in patients with ABLP. Compared to control HDLs, ABLP HDLs showed a 40% decrease of α-tocopherol and an 11-fold increased malondialdehyde concentration. These results demonstrate that in vivo oxidized HDLs do not lose their antiaggregatory properties despite oxidation.


Asunto(s)
Abetalipoproteinemia/metabolismo , Plaquetas/fisiología , Lipoproteínas HDL/metabolismo , Agregación Plaquetaria/fisiología , Abetalipoproteinemia/sangre , Abetalipoproteinemia/genética , Adenosina Difosfato/farmacología , Adulto , Apolipoproteínas B/genética , Ácido Araquidónico/farmacología , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Colágeno/farmacología , Ácidos Grasos Insaturados/metabolismo , Femenino , Humanos , Lipoproteínas HDL/química , Lipoproteínas HDL/farmacología , Malondialdehído/metabolismo , Mutación , Oxidación-Reducción , Estrés Oxidativo , Agregación Plaquetaria/efectos de los fármacos , Receptores Depuradores de Clase B/metabolismo , Adulto Joven , alfa-Tocoferol/sangre , alfa-Tocoferol/metabolismo
9.
Arterioscler Thromb Vasc Biol ; 33(12): 2715-23, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24092747

RESUMEN

OBJECTIVE: High-density lipoprotein (HDL) displays multiple atheroprotective activities and is highly heterogeneous in structure, composition, and function; the molecular determinants of atheroprotective functions of HDL are incompletely understood. Because phospholipids represent a major bioactive lipid component of HDL, we characterized the phosphosphingolipidome of major normolipidemic HDL subpopulations and related it to HDL functionality. APPROACH AND RESULTS: Using an original liquid chromatography-mass spectrometry/mass spectrometry methodology for phospholipid and sphingolipid profiling, 162 individual molecular lipid species were quantified across the 9 lipid subclasses, in the order of decreasing abundance, phosphatidylcholine>sphingomyelin>lysophosphatidylcholine>phosphatidylethanolamine>phosphatidylinositol>ceramide>phosphatidylserine>phosphatidylglycerol>phosphatidic acid. When data were expressed relative to total lipid, the contents of lysophosphatidylcholine and of negatively charged phosphatidylserine and phosphatidic acid increased progressively with increase in hydrated density of HDL, whereas the proportions of sphingomyelin and ceramide decreased. Key biological activities of HDL subpopulations, notably cholesterol efflux capacity from human THP-1 macrophages, antioxidative activity toward low-density lipoprotein oxidation, antithrombotic activity in human platelets, cell-free anti-inflammatory activity, and antiapoptotic activity in endothelial cells, were predominantly associated with small, dense, protein-rich HDL3. The biological activities of HDL particles were strongly intercorrelated, exhibiting significant correlations with multiple components of the HDL phosphosphingolipidome. Specifically, the content of phosphatidylserine revealed positive correlations with all metrics of HDL functionality, reflecting enrichment of phosphatidylserine in small, dense HDL3. CONCLUSIONS: Our structure-function analysis thereby reveals that the HDL lipidome may strongly affect atheroprotective functionality.


Asunto(s)
Apoptosis , Aterosclerosis/metabolismo , Colesterol/metabolismo , Inflamación/metabolismo , Lipoproteínas HDL3/metabolismo , Macrófagos/metabolismo , Estrés Oxidativo , Fosfolípidos/metabolismo , Trombosis/metabolismo , Adulto , Anciano , Aterosclerosis/sangre , Aterosclerosis/patología , Aterosclerosis/prevención & control , Plaquetas/metabolismo , Línea Celular Tumoral , Ceramidas/metabolismo , Colesterol/sangre , Cromatografía Liquida , Células Endoteliales/metabolismo , Células Endoteliales/patología , Humanos , Inflamación/sangre , Inflamación/patología , Inflamación/prevención & control , Mediadores de Inflamación/metabolismo , Lipoproteínas HDL3/sangre , Lipoproteínas LDL/metabolismo , Masculino , Persona de Mediana Edad , Oxidación-Reducción , Tamaño de la Partícula , Fosfolípidos/sangre , Esfingolípidos/metabolismo , Espectrometría de Masas en Tándem , Trombosis/sangre , Trombosis/patología , Trombosis/prevención & control
10.
Arterioscler Thromb Vasc Biol ; 33(8): 1803-11, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23788762

RESUMEN

OBJECTIVE: Endosomal signature phospholipid bis(monoacylglycero)phosphate (BMP) has been involved in the regulation of cellular cholesterol homeostasis. Accumulation of BMP is a hallmark of lipid storage disorders and was recently reported as a noticeable feature of oxidized low-density lipoprotein-laden macrophages. This study was designed to delineate the consequences of macrophage BMP accumulation on intracellular cholesterol distribution, metabolism, and efflux and to unravel the underlying molecular mechanisms. APPROACH AND RESULTS: We have developed an experimental design to specifically increase BMP content in RAW 264.7 macrophages. After BMP accumulation, cell cholesterol distribution was markedly altered, despite no change in low-density lipoprotein uptake and hydrolysis, cholesterol esterification, or total cell cholesterol content. The expression of cholesterol-regulated genes sterol regulatory element-binding protein 2 and hydroxymethylglutaryl-coenzyme A reductase was decreased by 40%, indicative of an increase of endoplasmic reticulum-associated cholesterol. Cholesterol delivery to plasma membrane was reduced as evidenced by the 20% decrease of efflux by cyclodextrin. Functionally, BMP accumulation reduced cholesterol efflux to both apolipoprotein A1 and high-density lipoprotein by 40% and correlated with a 40% decrease in mRNA contents of ATP-binding cassette transporter A1, ATP-binding cassette transporter G1, and liver-X receptor α and ß. Foam cell formation induced by oxidized low-density lipoprotein exposure was exacerbated in BMP-enriched cells. CONCLUSIONS: The present work shows for the first time a strong functional link between BMP and cholesterol-regulating genes involved in both intracellular metabolism and efflux. We propose that accumulation of cellular BMP might contribute to the deregulation of cholesterol homeostasis in atheromatous macrophages.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , LDL-Colesterol/metabolismo , Lipoproteínas/metabolismo , Lisofosfolípidos/metabolismo , Macrófagos/metabolismo , Monoglicéridos/metabolismo , Receptores Nucleares Huérfanos/metabolismo , Transportador 1 de Casete de Unión a ATP , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1 , Transportadoras de Casetes de Unión a ATP/genética , Animales , Línea Celular , Endosomas/metabolismo , Células Espumosas/metabolismo , Expresión Génica/fisiología , Homeostasis/fisiología , Lipoproteínas/genética , Lipoproteínas LDL/metabolismo , Receptores X del Hígado , Ratones , Receptores Nucleares Huérfanos/genética , Placa Aterosclerótica/metabolismo
11.
Antioxidants (Basel) ; 13(6)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38929073

RESUMEN

Stroke is a devastating neurological disorder that is characterized by the sudden disruption of blood flow to the brain. Lipids are essential components of brain structure and function and play pivotal roles in stroke pathophysiology. Dysregulation of lipid signaling pathways modulates key cellular processes such as apoptosis, inflammation, and oxidative stress, exacerbating ischemic brain injury. In the present review, we summarize the roles of lipids in stroke pathology in different models (cell cultures, animal, and human studies). Additionally, the potential of lipids, especially polyunsaturated fatty acids, to promote neuroprotection and their use as biomarkers in stroke are discussed.

12.
J Lipid Res ; 54(8): 2083-2094, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23740966

RESUMEN

We have recently described a di-hydroxylated compound called protectin DX (PDX) which derives from docosahexaenoic acid (DHA) by double lipoxygenation. PDX exhibits anti-aggregatory and anti-inflammatory properties, that are also exhibited by similar molecules, called poxytrins, which possess the same E,Z,E conjugated triene geometry, and are synthesized from other polyunsaturated fatty acids with 22 or 20 carbons. Here we present new biological activities of di-hydroxylated metabolites deriving from α-linolenic acid (18:3n-3) treated by soybean 15-lipoxygenase (sLOX). We show that 18:3n-3 is converted by sLOX into mainly 13(S)-OH-18:3 after reduction of the hydroperoxide product. But surprisingly, and in contrast to DHA which is metabolized into only one di-hydroxylated compound, 18:3n-3 leads to four di-hydroxylated fatty acid isomers. We report here the complete characterization of these compounds using high field NMR and GC-MS techniques, and some of their biological activities. These compounds are: 9(R),16(S)-dihydroxy-10E,12E,14E-octadecatrienoic acid, 9(S),16(S)-dihydroxy-10E,12E,14E-octadecatrienoic acid, 9(S),16(S)-dihydroxy-10E,12Z,14E-octadecatrienoic acid, and 9(R),16(S)-dihydroxy-10E,12Z,14E-octadecatrienoic acid. They can also be synthesized by the human recombinant 15-lipoxygenase (type 2). Their inhibitory effect on blood platelet and anti-inflammatory properties were compared with those already reported for PDX.


Asunto(s)
Antiinflamatorios no Esteroideos/metabolismo , Antiinflamatorios no Esteroideos/farmacología , Ácido alfa-Linolénico/química , Ácido alfa-Linolénico/metabolismo , Antiinflamatorios no Esteroideos/química , Araquidonato 15-Lipooxigenasa/metabolismo , Plaquetas/efectos de los fármacos , Humanos , Hidroxilación , Estructura Molecular , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , Ácido alfa-Linolénico/farmacología
13.
J Biol Chem ; 287(29): 24397-411, 2012 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-22605339

RESUMEN

To identify novel inhibitors of sphingomyelin (SM) metabolism, a new and selective high throughput microscopy-based screening based on the toxicity of the SM-specific toxin, lysenin, was developed. Out of a library of 2011 natural compounds, the limonoid, 3-chloro-8ß-hydroxycarapin-3,8-hemiacetal (CHC), rendered cells resistant to lysenin by decreasing cell surface SM. CHC treatment selectively inhibited the de novo biosynthesis of SM without affecting glycolipid and glycerophospholipid biosynthesis. Pretreatment with brefeldin A abolished the limonoid-induced inhibition of SM synthesis suggesting that the transport of ceramide (Cer) from the endoplasmic reticulum to the Golgi apparatus is affected. Unlike the Cer transporter (CERT) inhibitor HPA-12, CHC did not change the transport of a fluorescent short chain Cer analog to the Golgi apparatus or the formation of fluorescent and short chain SM from the corresponding Cer. Nevertheless, CHC inhibited the conversion of de novo synthesized Cer to SM. We show that CHC specifically inhibited the CERT-mediated extraction of Cer from the endoplasmic reticulum membranes in vitro. Subsequent biochemical screening of 21 limonoids revealed that some of them, such as 8ß-hydroxycarapin-3,8-hemiacetal and gedunin, which exhibits anti-cancer activity, inhibited SM biosynthesis and CERT-mediated extraction of Cer from membranes. Model membrane studies suggest that 8ß-hydroxycarapin-3,8-hemiacetal reduced the miscibility of Cer with membrane lipids and thus induced the formation of Cer-rich membrane domains. Our study shows that certain limonoids are novel inhibitors of SM biosynthesis and suggests that some biological activities of these limonoids are related to their effect on the ceramide metabolism.


Asunto(s)
Ceramidas/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Limoninas/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Esfingomielinas/biosíntesis , Animales , Células CHO , Rastreo Diferencial de Calorimetría , Cricetinae , Células HeLa , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Microscopía Confocal , Esfingolípidos/metabolismo
14.
Mol Membr Biol ; 29(7): 222-8, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22594701

RESUMEN

This short review takes into consideration the status of lipidomics as issued from almost a decade of development. Because of the huge number of molecular species analyzed, there is a trend in subdividing lipidomics according to subdomains, in particular relating to the function of molecules. It is also pointed out that lipid imaging without the use of exogenous probes will help making relationships between molecular structures and the topography of lipid assemblies, especially in cellular compartments. Finally, a fluxomics approach is proposed for lipid molecular species, both in terms of compartments and biochemical metabolism. The example of fluxolipidomics of essential fatty acids toward their enzyme-dependent oxygenated metabolites and further toward their degradation products is developed.


Asunto(s)
Metabolismo de los Lípidos , Peroxidación de Lípido , Metabolómica/métodos , Animales , Humanos , Metabolómica/tendencias
15.
J Lipid Res ; 53(10): 2069-2080, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22865918

RESUMEN

Dietary intake of long-chain n-3 PUFA is now widely advised for public health and in medical practice. However, PUFA are highly prone to oxidation, producing potentially deleterious 4-hydroxy-2-alkenals. Even so, the impact of consuming oxidized n-3 PUFA on metabolic oxidative stress and inflammation is poorly described. We therefore studied such effects and hypothesized the involvement of the intestinal absorption of 4-hydroxy-2-hexenal (4-HHE), an oxidized n-3 PUFA end-product. In vivo, four groups of mice were fed for 8 weeks high-fat diets containing moderately oxidized or unoxidized n-3 PUFA. Other mice were orally administered 4-HHE and euthanized postprandially versus baseline mice. In vitro, human intestinal Caco-2/TC7 cells were incubated with 4-hydroxy-2-alkenals. Oxidized diets increased 4-HHE plasma levels in mice (up to 5-fold, P < 0.01) compared with unoxidized diets. Oxidized diets enhanced plasma inflammatory markers and activation of nuclear factor kappaB (NF-κB) in the small intestine along with decreasing Paneth cell number (up to -19% in the duodenum). Both in vivo and in vitro, intestinal absorption of 4-HHE was associated with formation of 4-HHE-protein adducts and increased expression of glutathione peroxidase 2 (GPx2) and glucose-regulated protein 78 (GRP78). Consumption of oxidized n-3 PUFA results in 4-HHE accumulation in blood after its intestinal absorption and triggers oxidative stress and inflammation in the upper intestine.


Asunto(s)
Aldehídos/farmacocinética , Dieta Alta en Grasa , Ácidos Grasos Omega-3/metabolismo , Inflamación/metabolismo , Mucosa Intestinal/metabolismo , Estrés Oxidativo , Aldehídos/administración & dosificación , Animales , Biomarcadores/metabolismo , Células CACO-2 , Chaperón BiP del Retículo Endoplásmico , Glutatión Peroxidasa/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Absorción Intestinal/fisiología , Peroxidación de Lípido , Masculino , Ratones , Ratones Endogámicos C57BL , Oxidación-Reducción
16.
FASEB J ; 25(1): 382-8, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20833872

RESUMEN

Docosahexaenoic acid (DHA), an important component of marine lipids, exhibits anti-inflammatory activity related to some of its oxygenated metabolites, such as neuroprotectin/protectin D1 [NPD1/PD1; 10(R),17(S)-dihydroxy-docosa-4Z,7Z, 11E,13E,15Z,19Z-hexaenoic acid] produced through the 15-lipoxygenase pathway. However, other metabolites from DHA can be produced through this pathway, and other polyunsaturated fatty acids (PUFAs) of nutritional value may be oxygenated as well. Their biological activities remain unknown. Isomers of protectin D1 were synthesized using soybean lipoxygenase and tested for their ability to inhibit human blood platelet aggregation. A geometric isomer called PDX, previously described with the 11E,13Z,15E geometry, instead of 11E,13E,15Z in PD1, inhibited platelet aggregation at submicromolar concentrations when induced by either collagen, arachidonic acid, or thromboxane. The inhibition occurred at the level of both the cyclooxygenase activity and thromboxane receptor site. Interestingly, all the metabolites tested exhibiting the E,Z,E-conjugated triene were active, whereas E,E,Z trienes (as in PD1) or all-trans (E,E,E) trienes were inactive. We conclude that PDX and other oxygenated products from PUFAs of nutritional interest, having the E,Z,E-conjugated triene motif and collectively named poxytrins (PUFA oxygenated trienes), might have antithrombotic potential.


Asunto(s)
Ácidos Dicarboxílicos/farmacología , Ácidos Docosahexaenoicos/farmacología , Ácidos Grasos Insaturados/metabolismo , Ácidos Grasos Insaturados/farmacología , Inhibidores de Agregación Plaquetaria/farmacología , Agregación Plaquetaria/efectos de los fármacos , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacología , Ácido Araquidónico/farmacología , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Colágeno/farmacología , AMP Cíclico/metabolismo , Inhibidores de la Ciclooxigenasa/química , Inhibidores de la Ciclooxigenasa/metabolismo , Inhibidores de la Ciclooxigenasa/farmacología , Ácidos Dicarboxílicos/química , Ácidos Dicarboxílicos/metabolismo , Ácidos Docosahexaenoicos/química , Ácidos Docosahexaenoicos/metabolismo , Ácidos Grasos Insaturados/química , Humanos , Isomerismo , Oxígeno/metabolismo , Inhibidores de Agregación Plaquetaria/química , Inhibidores de Agregación Plaquetaria/metabolismo , Prostaglandina-Endoperóxido Sintasas/metabolismo , Receptores de Tromboxanos/antagonistas & inhibidores , Receptores de Tromboxanos/metabolismo , Tromboxanos/farmacología
17.
Nutrients ; 14(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36364810

RESUMEN

Docosahexaenoic acid-containing lysophosphatidylcholine (DHA-LysoPC) is presented as the main transporter of DHA from blood plasma to the brain. This is related to the major facilitator superfamily domain-containing protein 2A (Mfsd2a) symporter expression in the blood-brain barrier that recognizes the various lyso-phospholipids that have choline in their polar head. In order to stabilize the DHA moiety at the sn-2 position of LysoPC, the sn-1 position was esterified by the shortest acetyl chain, creating the structural phospholipid 1-acetyl,2-docosahexaenoyl-glycerophosphocholine (AceDoPC). This small structure modification allows the maintaining of the preferential brain uptake of DHA over non-esterified DHA. Additional properties were found for AceDoPC, such as antioxidant properties, especially due to the aspirin-like acetyl moiety, as well as the capacity to generate acetylcholine in response to the phospholipase D cleavage of the polar head. Esterification of DHA within DHA-LysoPC or AceDoPC could elicit more potent neuroprotective effects against neurological diseases.


Asunto(s)
Encefalopatías , Ácidos Docosahexaenoicos , Humanos , Ácidos Docosahexaenoicos/metabolismo , Esterificación , Encéfalo/metabolismo , Barrera Hematoencefálica/metabolismo , Fosfolípidos/metabolismo , Encefalopatías/tratamiento farmacológico , Encefalopatías/metabolismo
18.
Biochimie ; 203: 106-117, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35041857

RESUMEN

The specific activities of gastric and pancreatic lipases were measured using triacylglycerols (TAG) from rapeseed oil, purified 1,3-sn-DAG and 1,2(2,3)-sn-DAG produced from this oil, as well as a rapeseed oil enriched with 40% w/w DAG (DAGOIL). Gastric lipase was more active on 1,3-sn-DAG than on 1,2(2,3)-sn-DAG and TAG, whereas pancreatic lipase displayed a reverse selectivity with a higher activity on TAG than on DAG taken as initial substrates. However, in both cases, the highest activities were displayed on DAGOIL. These findings show that DAG mixed with TAG, such as in the course of digestion, is a better substrate for lipases than TAG. The same rapeseed oil acylglycerols were used to investigate intestinal fat absorption in rats with mesenteric lymph duct cannulation. The levels of TAG synthesized in the intestine and total fatty acid concentration in lymph were not different when the rats were fed identical amounts of rapeseed oil TAG, 1,2(2,3)-sn-DAG, 1,3-sn-DAG or DAGOIL. Since the lipolysis of 1,3-sn-DAG by digestive lipases leads to glycerol and not 2-sn-monoacylglycerol (2-sn-MAG) like TAG lipolysis, these results suggest that the re-synthesis of TAG in the enterocytes can entirely occur through the "glycerol-3-phosphate (G3P)" pathway, with the same efficiency as the 2-sn-MAG pathway predominantly involved in the intestinal fat absorption. These findings shed new light on the role played by DAG as intermediate lipolysis products. Depending on their structure, 1,2(2,3)-sn-DAG versus 1,3-sn-DAG, DAG may control the pathway (2-sn-MAG or G3P) by which TAG are re-synthesized in the enterocytes.


Asunto(s)
Diglicéridos , Enterocitos , Ratas , Animales , Diglicéridos/metabolismo , Enterocitos/metabolismo , Lipasa/metabolismo , Aceite de Brassica napus/metabolismo , Glicerol/metabolismo , Triglicéridos/metabolismo , Digestión , Redes y Vías Metabólicas
20.
Chem Res Toxicol ; 24(5): 752-62, 2011 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-21462967

RESUMEN

Lipid peroxidation produces many reactive byproducts including 4-hydroxy-2-hexenal (HHE) and 4-hydroxy-2-nonenal (HNE) derived from the peroxidation of n-3 and n-6 polyunsaturated fatty acids, respectively. HNE and HHE can modify circulating biomolecules through the formation of covalent adducts. It remains, however, unknown whether HHE and HNE could induce functional and structural changes in the insulin molecule, which may in turn be pivotal in the development of insulin resistance and diabetes. Recombinant human insulin was incubated in the presence of HHE or HNE, and the formation of covalent adducts on insulin was analyzed by mass spectrometry analysis. Insulin tolerance test in mice and stimulation of glucose uptake by 3T3 adipocytes and L6 muscle cells were used to evaluate the biological efficiency of adducted insulin compared with the native one. One to 5 adducts were formed on insulin through Michael adduction, involving histidine residues. Glucose uptake in 3T3-L1 and L6C5 cells as well as the hypoglycemic effect in mice was significantly reduced after treatment with adducted insulin compared to native insulin. The formation of HNE- and HHE-Michael adducts significantly disrupts the biological activity of insulin. These structural and functional abnormalities of the insulin molecule might contribute to the pathogenesis of insulin resistance.


Asunto(s)
Aldehídos/metabolismo , Insulina/química , Insulina/metabolismo , Peroxidación de Lípido , Células 3T3-L1 , Secuencia de Aminoácidos , Animales , Línea Celular , Humanos , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Estrés Oxidativo , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA