RESUMEN
Drug-induced phospholipidosis (PLD) involves the accumulation of phospholipids in cells of multiple tissues, particularly within lysosomes, and it is associated with prolonged exposure to druglike compounds, predominantly cationic amphiphilic drugs (CADs). PLD affects a significant portion of drugs currently in development and has recently been proven to be responsible for confounding antiviral data during drug repurposing for SARS-CoV-2. In these scenarios, it has become crucial to identify potential safe drug candidates in advance and distinguish them from those that may lead to false in vitro antiviral activity. In this work, we developed a series of machine learning classifiers with the aim of predicting the PLD-inducing potential of drug candidates. The models were built on a high-quality chemical collection comprising 545 curated small molecules extracted from ChEMBL v30. The most effective model, obtained using the balanced random forest algorithm, achieved high performance, including an AUC value computed in validation as high as 0.90. The model was made freely available through a user-friendly web platform named AMALPHI (https://www.ba.ic.cnr.it/softwareic/amalphiportal/), which can represent a valuable tool for medicinal chemists interested in conducting an early evaluation of PLD inducer potential.
Asunto(s)
Lipidosis , Fosfolípidos , Humanos , Células Hep G2 , Lisosomas , Aprendizaje Automático , Antivirales/efectos adversos , Lipidosis/inducido químicamenteRESUMEN
In recent years, an increasing amount of work has been carried out regarding the study of the etiopathology of Alzheimer's Disease (AD). This neurodegenerative disease is characterized by several organic and molecular correlates, which paint a complex picture that also reflects the historic challenge faced by the worldwide scientific community in finding an effective cure for it. In this paper, we describe the synthesis of novel rivastigmine derivatives and their characterization as wide-spectrum enzyme (AChE, BChE, FAAH, MAO-A and MAO-B) inhibitors with potential application in the therapy of AD following the paradigm of multi-target design. 5 (ROS151) and 23 show similar inhibitory profile compared to donepezil on cholinesterases, and ca. two hundred twenty-three and eighty-seven times more active than rivastigmine on AChE. Moreover, ROS151 was found to be a potential metal chelator. Compounds 6 and 8 are very interesting and original multi-functional promising hybrids, with comparable potency on distinct panels of enzymes. All these promising rivastigmine-like hybrids were assayed for their pharmacokinetic properties by using different bio-analytical techniques, showing interesting applicability profiles. Moreover, cytotoxicity assays displayed a safety profile on three different cell lines.
RESUMEN
A series of benzoxazole-based amides and sulfonamides were synthesized and evaluated for their human peroxisome proliferator-activated receptor (PPAR)α and PPARγ activity. All tested compounds showed a dual antagonist profile on both PPAR subtypes; based on transactivation results, seven compounds were selected to test their in vitro antiproliferative activity in a panel of eight cancer cell lines with different expression rates of PPARα and PPARγ. 3f was identified as the most cytotoxic compound, with higher potency in the colorectal cancer cell lines HT-29 and HCT116. Compound 3f induced a concentration-dependent activation of caspases and cell-cycle arrest in both colorectal cancer models. Docking experiments were also performed to shed light on the putative binding mode of this novel class of dual PPARα/γ antagonists.
Asunto(s)
Antineoplásicos , Benzoxazoles , Proliferación Celular , Neoplasias Colorrectales , Simulación del Acoplamiento Molecular , PPAR alfa , PPAR gamma , Humanos , Benzoxazoles/farmacología , Benzoxazoles/síntesis química , Benzoxazoles/química , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , PPAR gamma/antagonistas & inhibidores , PPAR gamma/metabolismo , PPAR alfa/antagonistas & inhibidores , PPAR alfa/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Relación Estructura-Actividad , Proliferación Celular/efectos de los fármacos , Células HT29 , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Células HCT116 , Estructura Molecular , Ensayos de Selección de Medicamentos Antitumorales , Sulfonamidas/farmacología , Sulfonamidas/síntesis química , Sulfonamidas/químicaRESUMEN
A new series of aryloxyacetic acids was prepared and tested as peroxisome proliferator-activated receptors (PPARs) agonists and fatty acid amide hydrolase (FAAH) inhibitors. Some compounds exhibited an interesting dual activity that has been recently proposed as a new potential therapeutic strategy for the treatment of Alzheimer's disease (AD). AD is a multifactorial pathology, hence multi-target agents are currently one of the main lines of research for the therapy and prevention of this disease. Given that cholinesterases represent one of the most common targets of recent research, we decided to also evaluate the effects of our compounds on the inhibition of these specific enzymes. Interestingly, two of these compounds, (S)-5 and 6, showed moderate activity against acetylcholinesterase (AChE) and even some activity, although at high concentration, against Aß peptide aggregation, thus demonstrating, in agreement with the preliminary dockings carried out on the different targets, the feasibility of a simultaneous multi-target activity towards PPARs, FAAH, and AChE. As far as we know, these are the first examples of molecules endowed with this pharmacological profile that might represent a promising line of research for the identification of novel candidates for the treatment of AD.
Asunto(s)
Ácido Acético/química , Acetilcolinesterasa/química , Amidohidrolasas/antagonistas & inhibidores , Receptores Activados del Proliferador del Peroxisoma/agonistas , Inhibidores de la Colinesterasa , HumanosRESUMEN
Matrix metalloproteinases (MMPs) are a large family of zinc-dependent endoproteases known to exert multiple regulatory roles in tumor progression and invasiveness. This encouraged over the years the approach of MMP, and particularly MMP-2, targeting for anticancer treatment. Early generations of MMP inhibitors, based on aspecific zinc binding groups (ZBGs) assembled on (pseudo)peptide scaffolds, have been discontinued due to the clinical emergence of toxicity and further drawbacks, giving the way to inhibitors with alternative zinc-chelator moieties or not binding the catalytic zinc ion. In the present paper, we continue the search for new non-zinc binding MMP-2 inhibitors: exploiting previously identified compounds, a virtual screening (VS) campaign was carried out and led to the identification of a new class of ligands. The structure-activity relationship (SAR) of the benzimidazole scaffold was explored by synthesis of several analogues whose inhibition activity was tested with enzyme inhibition assays. By performing the molecular simplification approach, we disclosed different sets of single-digit micromolar inhibitors of MMP-2, with up to a ten-fold increase in inhibitory activity and ameliorated selectivity towards off-target MMP-8, compared to selected lead compound. Molecular dynamics calculations conducted on complexes of MMP-2 with docked privileged structures confirmed that analyzed inhibitors avoid targeting the zinc ion and dip inside the S1' pocket. Present results provide a further enrichment of our insights for the design of novel MMP-2 selective inhibitors.
Asunto(s)
Bencimidazoles/farmacología , Metaloproteinasa 2 de la Matriz/metabolismo , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Bencimidazoles/química , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Humanos , Inhibidores de la Metaloproteinasa de la Matriz/química , Modelos Moleculares , Estructura Molecular , Relación Estructura-ActividadRESUMEN
In recent years, Peroxisome Proliferator-Activated Receptors (PPARs) have been connected to the endocannabinoid system. These nuclear receptors indeed mediate the effects of anandamide and similar substances such as oleoyl-ethanolamide and palmitoyl-ethanolamide. An increasing body of literature describing the interactions between the endocannabinoid system and PPARs has slowly but surely been accumulating over the past decade, and a multitarget approach involving these receptors and endocannabinoid degrading enzyme FAAH has been proposed for the treatment of inflammatory states, cancer, and Alzheimer's disease. The lack of knowledge about compounds endowed with such an activity profile therefore led us to investigate a library of readily available, well-characterized PPAR agonists that we had synthesized over the years in order to find a plausible lead compound for further development. Moreover, we propose a rationalization of our results via a docking study, which sheds some light on the binding mode of these PPAR agonists to FAAH and opens the way for further research in this field.
Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Inhibidores Enzimáticos , PPAR alfa/agonistas , PPAR delta/agonistas , PPAR gamma/agonistas , Amidohidrolasas/metabolismo , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Células Hep G2 , Humanos , LigandosRESUMEN
The reduced activation of PPARs has a positive impact on cancer cell growth and viability in multiple preclinical tumor models, suggesting a new therapeutic potential for PPAR antagonists. In the present study, the benzothiazole amides 2a-g were synthesized and their activities on PPARs were investigated. Transactivation assay showed a moderate activity of the novel compounds as PPARα antagonists. Notably, in cellular assays they exhibited cytotoxicity in pancreatic, colorectal and paraganglioma cancer cells overexpressing PPARα. In particular, compound 2b showed the most remarkable inhibition of viability (greater than 90%) in two paraganglioma cell lines, with IC50 values in the low micromolar range. In addition, 2b markedly impaired colony formation capacity in the same cells. Taken together, these results show a relevant anti-proliferative potential of compound 2b, which appears particularly effective in paraganglioma, a rare tumor poorly responsive to chemotherapy.
Asunto(s)
Amidas/farmacología , Antineoplásicos/farmacología , Benzotiazoles/farmacología , Receptores Activados del Proliferador del Peroxisoma/antagonistas & inhibidores , Amidas/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Benzotiazoles/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Relación Estructura-ActividadRESUMEN
A few symptomatic drugs are currently available for Alzheimer's Disease (AD) therapy, but these molecules are only able to temporary improve the cognitive capacity of the patients if administered in the first stages of the pathology. Recently, important advances have been achieved about the knowledge of this complex condition, which is now considered a multi-factorial disease. Researchers are, thus, more oriented toward the preparation of molecules being able to contemporaneously act on different pathological features. To date, the inhibition of acetylcholinesterase (AChE) and of ß-amyloid (Aß) aggregation as well as the antioxidant activity and the removal and/or redistribution of metal ions at the level of the nervous system are the most common investigated targets for the treatment of AD. Since many natural compounds show multiple biological properties, a series of secondary metabolites of plants or fungi with suitable structural characteristics have been selected and assayed in order to evaluate their potential role in the preparation of multi-target agents. Out of six compounds evaluated, 1 showed the best activity as an antioxidant (EC50 = 2.6 ± 0.2 µmol/µmol of DPPH) while compound 2 proved to be effective in the inhibition of AChE (IC50 = 6.86 ± 0.67 µM) and Aß1â»40 aggregation (IC50 = 74 ± 1 µM). Furthermore, compound 6 inhibited BChE (IC50 = 1.75 ± 0.59 µM) with a good selectivity toward AChE (IC50 = 86.0 ± 15.0 µM). Moreover, preliminary tests on metal chelation suggested a possible interaction between compounds 1, 3 and 4 and copper (II). Molecules with the best multi-target profiles will be used as starting hit compounds to appropriately address future studies of Structure-Activity Relationships (SARs).
Asunto(s)
Antioxidantes/química , Factores Biológicos/química , Inhibidores de la Colinesterasa/química , Agregado de Proteínas/efectos de los fármacos , Enfermedad de Alzheimer/tratamiento farmacológico , Antioxidantes/farmacología , Factores Biológicos/farmacología , Inhibidores de la Colinesterasa/farmacología , Hongos/química , Humanos , Estructura Molecular , Extractos Vegetales/química , Extractos Vegetales/farmacología , Pironas/química , Pironas/farmacología , Metabolismo Secundario , Relación Estructura-ActividadRESUMEN
A series of nanomolar phosphonate matrix metalloproteinase (MPP) inhibitors was tested for inhibitory activity against a panel of selected human carbonic anhydrase (CA, EC 4.2.1.1) isozymes, covering the cancer-associated CA IX and XII. None of the reported sulfonyl and sulfonylamino-derivatives sensitively affected the catalytic activity of the cytosolic isoforms CA I and II, which are considered off-target isoforms in view of their physiological role. The most active inhibitors were in the series of chiral N-(sulfonyl)phosphovaline derivatives, which showed good to excellent inhibitory activity over target CAs, with compound 15 presenting the best isoform-selectivity toward CA IX. We suggest here that the phosphonates have the potential as dual inhibitors of MMPs and CAs, both involved in tumor formation, invasion and metastasis.
Asunto(s)
Anhidrasas Carbónicas/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Metaloproteinasas de la Matriz/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Ácidos Fosforosos/síntesis química , Ácidos Fosforosos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasas Carbónicas/clasificación , Activación Enzimática/efectos de los fármacos , Humanos , Ácidos Fosforosos/química , Isoformas de ProteínasRESUMEN
Genome polymorphisms are responsible for phenotypic differences between humans and for individual susceptibility to genetic diseases and therapeutic responses. Non-synonymous single-nucleotide polymorphisms (nsSNPs) lead to protein variants with a change in the amino acid sequence that may affect the structure and/or function of the protein and may be utilized as efficient structural and functional markers of association to complex diseases. This study is focused on nsSNP variants of the ligand binding domain of PPARγ a nuclear receptor in the superfamily of ligand inducible transcription factors that play an important role in regulating lipid metabolism and in several processes ranging from cellular differentiation and development to carcinogenesis. Here we selected nine nsSNPs variants of the PPARγ ligand binding domain, V290M, R357A, R397C, F360L, P467L, Q286P, R288H, E324K, and E460K, expressed in cancer tissues and/or associated with partial lipodystrophy and insulin resistance. The effects of a single amino acid change on the thermodynamic stability of PPARγ, its spectral properties, and molecular dynamics have been investigated. The nsSNPs PPARγ variants show alteration of dynamics and tertiary contacts that impair the correct reciprocal positioning of helices 3 and 12, crucially important for PPARγ functioning.
Asunto(s)
PPAR gamma/química , PPAR gamma/genética , Polimorfismo de Nucleótido Simple , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión , Dicroismo Circular , Humanos , Ligandos , Simulación de Dinámica Molecular , PPAR gamma/metabolismo , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Desplegamiento Proteico/efectos de los fármacos , Relación Estructura-Actividad , Termodinámica , Transcripción Genética , Urea/farmacologíaRESUMEN
Statin-induced skeletal muscle damage in rats is associated to the reduction of the resting sarcolemmal chloride conductance (gCl) and ClC-1 chloride channel expression. These drugs also affect the ClC-1 regulation by increasing protein kinase C (PKC) activity, which phosphorylate and close the channel. Also the intracellular resting calcium (restCa) level is increased. Similar alterations are observed in skeletal muscles of aged rats, suggesting a higher risk of statin myotoxicity. To verify this hypothesis, we performed a 4-5-weeks atorvastatin treatment of 24-months-old rats to evaluate the ClC-1 channel function by the two-intracellular microelectrodes technique as well as transcript and protein expression of different genes sensitive to statins by quantitative real-time-PCR and western blot analysis. The restCa was measured using FURA-2 imaging, and histological analysis of muscle sections was performed. The results show a marked reduction of resting gCl, in agreement with the reduced ClC-1 mRNA and protein expression in atorvastatin-treated aged rats, with respect to treated adult animals. The observed changes in myocyte-enhancer factor-2 (MEF2) expression may be involved in ClC-1 expression changes. The activity of PKC was also increased and further modulate the gCl in treated aged rats. In parallel, a marked reduction of the expression of glycolytic and mitochondrial enzymes demonstrates an impairment of muscle metabolism. No worsening of restCa or histological features was found in statin-treated aged animals. These findings suggest that a strong reduction of gCl and alteration of muscle metabolism coupled to muscle atrophy may contribute to the increased risk of statin-induced myopathy in the elderly.
Asunto(s)
Envejecimiento/fisiología , Atorvastatina/efectos adversos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , Atrofia Muscular/inducido químicamente , Envejecimiento/metabolismo , Animales , Atorvastatina/sangre , Atorvastatina/farmacocinética , Calcio/metabolismo , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Creatina Quinasa/sangre , Inhibidores de Hidroximetilglutaril-CoA Reductasas/sangre , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacocinética , Factores de Transcripción MEF2 , Masculino , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/fisiología , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Atrofia Muscular/fisiopatología , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Ratas WistarRESUMEN
The p53-MDM2 interaction is a well-known protein-protein contact, and its disruption is a key event for p53 activation and induction of its oncosuppressor response. The design of small molecules that can block the p53-MDM2 interaction and reactivate the p53 function is a promising strategy for cancer therapy. To date, several compounds have been identified as p53-MDM2 inhibitors, and X-ray structures of MDM2 complexed with several ligands are available in the Brookhaven Protein Data Bank. These data have been exploited to compile a hierarchical virtual screening protocol. The first steps were aimed at selecting a focused library, which was submitted in parallel to docking and pharmacophore model alignment. Selected compounds were subjected to inhibition assays of both cellular vitality (MTT) and p53-MDM2 interaction (ELISA and co-immunoprecipitation), disclosing four nanomolar inhibitors.
Asunto(s)
Antineoplásicos/farmacología , Ensayos de Selección de Medicamentos Antitumorales/métodos , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Línea Celular Tumoral , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Unión Proteica/efectos de los fármacos , Conformación Proteica en Hélice alfa , Proteínas Proto-Oncogénicas c-mdm2/química , Relación Estructura-Actividad , Proteína p53 Supresora de Tumor/química , Interfaz Usuario-ComputadorRESUMEN
New catechol-containing chemical entities have been investigated as matrix metalloproteinase inhibitors as well as antioxidant molecules. The combination of the two properties could represent a useful feature due to the potential application in all the pathological processes characterized by increased proteolytic activity and radical oxygen species (ROS) production, such as inflammation and photoaging. A series of catechol-based molecules were synthesized and tested for both proteolytic and oxidative inhibitory activity, and the detailed binding mode was assessed by crystal structure determination of the complex between a catechol derivative and the matrix metalloproteinase-8. Surprisingly, X-ray structure reveals that the catechol oxygens do not coordinates the zinc atom.
Asunto(s)
Antioxidantes/farmacología , Catecoles/farmacología , Metaloproteinasa 8 de la Matriz/metabolismo , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Antioxidantes/síntesis química , Antioxidantes/química , Catecoles/síntesis química , Catecoles/química , Relación Dosis-Respuesta a Droga , Humanos , Metaloproteinasa 8 de la Matriz/aislamiento & purificación , Inhibidores de la Metaloproteinasa de la Matriz/síntesis química , Inhibidores de la Metaloproteinasa de la Matriz/química , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad Cuantitativa , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Matrix metalloproteinases (MMPs) are an important family of zinc-containing enzymes with a central role in many physiological and pathological processes. Although several MMP inhibitors have been synthesized over the years, none reached the market because of off-target effects, due to the presence of a zinc binding group in the inhibitor structure. To overcome this problem non-zinc-binding inhibitors (NZIs) have been recently designed. In a previous article, a virtual screening campaign identified some hydroxynaphtyridine and hydroxyquinoline as MMP-2 non-zinc-binding inhibitors. In the present work, simplified analogues of previously-identified hits have been synthesized and tested in enzyme inhibition assays. Docking and molecular dynamics studies were carried out to rationalize the activity data.
Asunto(s)
Diseño de Fármacos , Hidroxiquinolinas/química , Metaloproteinasa 2 de la Matriz/química , Inhibidores de la Metaloproteinasa de la Matriz/química , Naftiridinas/química , Pruebas de Enzimas , Humanos , Hidroxiquinolinas/síntesis química , Cinética , Inhibidores de la Metaloproteinasa de la Matriz/síntesis química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Naftiridinas/síntesis química , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Relación Estructura-Actividad , Zinc/químicaRESUMEN
Three different flavoring methods of olive oil were tested employing two different herbs, thyme and oregano. The traditional method consist in the infusion of herbs into the oil. A second scarcely diffused method is based on the addition of herbs to the crushed olives before the malaxation step during the extraction process. The third innovative method is the implementation of the ultrasound before the olive paste malaxation. The objective of the study is to verify the effect of the treatments on the quality of the product, assessed by means of the chemical characteristics, the phenol composition and the radical scavenging activity of the resulting oils. The less favorable method was the addition of herbs directly to the oil. A positive effect was achieved by the addition of herbs to the olive paste and other advantages were attained by the employment of ultrasound. These last two methods allow to produce oils "ready to sell", instead the infused oils need to be filtered. Moreover, the flavoring methods applied during the extraction process determine a significant increment of phenolic content and radical scavenging activity of olive oils. The increments were higher when oregano is used instead of thyme. Ultrasound inhibited the olive polyphenoloxidase, the endogenous enzyme responsible for olive oil phenol oxidation. This treatment of olive paste mixed with herbs before malaxation was revealed as the most favorable method due to the best efficiency, reduced time consumption and minor labor, enhancing the product quality of flavored olive oil.
Asunto(s)
Aromatizantes/química , Manipulación de Alimentos/métodos , Olea/química , Aceite de Oliva/química , Origanum/química , Thymus (Planta)/química , Catecol Oxidasa/metabolismo , Depuradores de Radicales Libres/análisis , Depuradores de Radicales Libres/química , Humanos , Extracción Líquido-Líquido , Pomadas/química , Olea/enzimología , Aceite de Oliva/aislamiento & purificación , Aceite de Oliva/normas , Oxidación-Reducción , Fenoles/análisis , Fenoles/química , Hojas de la Planta/química , Proteínas de Plantas/metabolismo , GustoRESUMEN
Peroxisome proliferator-activated receptors (PPARs) are ligand-dependent transcription factors regulating lipid and glucose metabolism. Ongoing drug discovery programs aim to develop dual PPARα/γ agonists devoid of the side effects of the marketed antidiabetic agents thiazolidinediones and the dual agonists glitazars. Recently, we described a new dual PPARα/γ ligand, LT175, with a partial agonist profile against PPARγ and interacting with a newly identified region of the PPARγ-ligand binding domain (1). Here we show that LT175 differentially activated PPARγ target genes involved in fatty acid esterification and storage in 3T3-L1-derived adipocytes. This resulted in a less severe lipid accumulation compared with that triggered by rosiglitazone, suggesting that LT175 may have a lower adipogenic activity. Consistent with this hypothesis, in vivo administration of LT175 to mice fed a high-fat diet decreased body weight, adipocyte size, and white adipose tissue mass, as assessed by magnetic resonance imaging. Furthermore, LT175 significantly reduced plasma glucose, insulin, non-esterified fatty acids, triglycerides, and cholesterol and increased circulating adiponectin and fibroblast growth factor 21 levels. Oral glucose and insulin tolerance tests showed that the compound improves glucose homeostasis and insulin sensitivity. Moreover, we demonstrate that the peculiar interaction of LT175 with PPARγ affected the recruitment of the coregulators cyclic-AMP response element-binding protein-binding protein and nuclear corepressor 1 (NCoR1), fundamentals for the PPARγ-mediated adipogenic program. In conclusion, our results describe a new PPAR ligand, modulating lipid and glucose metabolism with reduced adipogenic activity, that may be used as a model for a series of novel molecules with an improved pharmacological profile for the treatment of dyslipidemia and type 2 diabetes.
Asunto(s)
Adipogénesis/efectos de los fármacos , Compuestos de Bifenilo/administración & dosificación , Hipoglucemiantes/farmacología , Resistencia a la Insulina , Insulina/farmacología , PPAR alfa/agonistas , PPAR gamma/agonistas , Fenilpropionatos/administración & dosificación , Células 3T3-L1 , Animales , Compuestos de Bifenilo/metabolismo , Glucemia/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Dislipidemias/tratamiento farmacológico , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Hipoglucemiantes/metabolismo , Insulina/sangre , Ligandos , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Co-Represor 1 de Receptor Nuclear/metabolismo , PPAR alfa/metabolismo , PPAR gamma/metabolismo , Fenilpropionatos/metabolismoRESUMEN
The peroxisome proliferator-activated receptors (PPARs) are transcription factors that regulate glucose and lipid metabolism. The role of PPARs in several chronic diseases such as type 2 diabetes, obesity and atherosclerosis is well known and, for this reason, they are the targets of antidiabetic and hypolipidaemic drugs. In the last decade, some rare mutations in human PPARγ that might be associated with partial lipodystrophy, dyslipidaemia, insulin resistance and colon cancer have emerged. In particular, the F360L mutant of PPARγ (PPARγ2 residue 388), which is associated with familial partial lipodystrophy, significantly decreases basal transcriptional activity and impairs stimulation by synthetic ligands. To date, the structural reason for this defective behaviour is unclear. Therefore, the crystal structure of PPARγ F360L together with the partial agonist LT175 has been solved and the mutant has been characterized by circular-dichroism spectroscopy (CD) in order to compare its thermal stability with that of the wild-type receptor. The X-ray analysis showed that the mutation induces dramatic conformational changes in the C-terminal part of the receptor ligand-binding domain (LBD) owing to the loss of van der Waals interactions made by the Phe360 residue in the wild type and an important salt bridge made by Arg357, with consequent rearrangement of loop 11/12 and the activation function helix 12 (H12). The increased mobility of H12 makes the binding of co-activators in the hydrophobic cleft less efficient, thereby markedly lowering the transactivation activity. The spectroscopic analysis in solution and molecular-dynamics (MD) simulations provided results which were in agreement and consistent with the mutant conformational changes observed by X-ray analysis. Moreover, to evaluate the importance of the salt bridge made by Arg357, the crystal structure of the PPARγ R357A mutant in complex with the agonist rosiglitazone has been solved.
Asunto(s)
Lipodistrofia Parcial Familiar/genética , Mutación , PPAR gamma/química , Activación Transcripcional , Cristalización , Humanos , Mutagénesis Sitio-Dirigida , PPAR gamma/genéticaRESUMEN
New analogs of the PPAR pan agonist AL29-26 encompassed ligand (S)-7 showing potent activation of PPARα and -γ subtypes as a partial agonist. In vitro experiments and docking studies in the presence of PPAR antagonists were performed to help interpretation of biological data and investigate the main interactions at the binding sites. Further in vitro experiments showed that (S)-7 induced anti-steatotic effects and enhancement of the glucose uptake. This latter effect could be partially ascribed to a significant inhibition of the mitochondrial pyruvate carrier demonstrating that (S)-7 also acted through insulin-independent mechanisms. In vivo experiments showed that this compound reduced blood glucose and lipid levels in a diabetic mice model displaying no toxicity on bone, kidney, and liver. To our knowledge, this is the first example of dual PPARα/γ partial agonist showing these combined effects representing, therefore, the potential lead of new drugs for treatment of dyslipidemic type 2 diabetes.
Asunto(s)
Hipoglucemiantes , PPAR alfa , PPAR gamma , Animales , PPAR alfa/agonistas , PPAR alfa/metabolismo , PPAR gamma/agonistas , PPAR gamma/metabolismo , Ratones , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Hipoglucemiantes/síntesis química , Humanos , Relación Estructura-Actividad , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Masculino , Estructura Molecular , Relación Dosis-Respuesta a Droga , Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores , Transportadores de Ácidos Monocarboxílicos/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Simulación del Acoplamiento Molecular , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismoRESUMEN
The complexity of matrix metalloproteinase inhibitors (MMPIs) design derives from the difficulty in carefully addressing their inhibitory activity towards the MMP isoforms involved in many pathological conditions. In particular, specific metalloproteinases, such as MMP-2 and MMP-9, are key regulators of the 'vicious cycle' occurring between tumor metastases growth and bone remodeling. In an attempt to devise new approaches to selective inhibitor derivatives, we describe novel bisphosphonate bone seeking MMP inhibitors (BP-MMPIs), capable to be selectively targeted and to overcome undesired side effects of broad spectrum MMPIs. In vitro activity (IC50 values) for each inhibitor was determined against MMP-2, -8, -9 and -14, because of their relevant role in skeletal development and renewal. The results show that BP-MMPIs reached IC50 values of enzymatic inhibition in the low micromolar range. Computational studies, used to rationalize some trends in the observed inhibitory profiles, suggest a possible differential binding mode in MMP-2 that explains the selective inhibition of this isoform. In addition, survival assay was conducted on J774 cell line, a well known model system used to evaluate the structure-activity relationship of BPs for inhibiting bone resorption. The resulting data, confirming the specific activity of BP-MMPIs, and their additional proved propensity to bind hydroxyapatite powder in vitro, suggest a potential use of BP-MMPIs in skeletal malignancies.
Asunto(s)
Difosfonatos/química , Inhibidores de la Metaloproteinasa de la Matriz/química , Metaloproteinasas de la Matriz/química , Animales , Sitios de Unión , Línea Celular , Supervivencia Celular/efectos de los fármacos , Difosfonatos/metabolismo , Difosfonatos/toxicidad , Durapatita/química , Durapatita/metabolismo , Células Hep G2 , Humanos , Metaloproteinasa 14 de la Matriz/química , Metaloproteinasa 14 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/química , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 8 de la Matriz/química , Metaloproteinasa 8 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/química , Metaloproteinasa 9 de la Matriz/metabolismo , Inhibidores de la Metaloproteinasa de la Matriz/metabolismo , Inhibidores de la Metaloproteinasa de la Matriz/toxicidad , Metaloproteinasas de la Matriz/metabolismo , Ratones , Simulación del Acoplamiento Molecular , Unión Proteica , Estructura Terciaria de Proteína , Relación Estructura-ActividadRESUMEN
Treatment of primary bone malignancies comprises surgery, radiotherapy, chemotherapy, and analgesics. Platinum-based chemotherapeutics, such as cisplatin, are commonly used for the treatment of bone cancer but, despite their success, outcomes are limited by toxicity and resistance. Recently, dinuclear Pt complexes with a bridging geminal bisphosphonate ligand proved to be endowed with selective accumulation in bone tumors or metastases leading to improved efficacy and reduced systemic toxicity. Further improvement could be expected by the use of a bisphosphonate ligand with intrinsic pharmacological activity such as zoledronic acid (ZL). In the present work is reported the synthesis and full characterization of the dinuclear Pt(II) complex [{cis-Pt(NH3)2}2(ZL)]HSO4 which combines two drugs with antitumor activity, cisplatin and zoledronic acid. Both drugs, individually, are already approved by the U.S. Food and Drug Administration and the European Medicinal Agency for clinical use. The in vitro cytotoxicity of the new Pt(II)-ZL complex has been tested against a panel of human tumor cell lines.