Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Inorg Chem ; 63(26): 12175-12189, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38870544

RESUMEN

The article highlights the cooperative impact of azoheteroarenes [abbt: 2,2'-azobis(benzothiazole), L1-L3; bmpd: (E)-1,2-bis(1-methyl-1H-pyrazole-3-yl) diazene, L4] and coligands [bpy: 2,2'-bipyridine; pap: 2-phenylazopyridine] in tuning radical (N-N•-) versus nonradical (N═N0) states of L on selective OsII-platforms in structurally/spectroscopically characterized monomeric [1]ClO4-[6]ClO4 and [1](ClO4)2-[2](ClO4)2/[7](ClO4)2-[8](ClO4)2, respectively. The preferred syn-configuration of L in the complexes prevented obtaining ligand bridged dimeric species. It revealed that {Os(bpy)2} facilitated the stabilization of both nonradical ([1](ClO4)2-[2](ClO4)2) and radical ([1]ClO4-[2]ClO4) states of L1/L2, while it delivered exclusively the radical form for L3 in [3]ClO4. In contrast, {Os(pap)2} generated radical states of L1-L3 in [4]ClO4-[6]ClO4, respectively, without any alteration of the redox state of OsII and azo (N═N0) function of the pap coligand. The neutral state of L4 was, however, ascertained in [7](ClO4)2 or [8](ClO4)2 irrespective of the nature of the metal fragment {Os(bpy)2} or {Os(pap)2}, respectively. Switching between radical and nonradical forms of L in the complexes as a function L and coligand could be addressed based on their relative FMO (frontier molecular orbital) energies. Multiple close redox steps of the complexes extended a competitive electron transfer scenario between the redox active components including metal/L/bpy/pap, leading to delicate electronic forms in each case.

2.
Inorg Chem ; 63(29): 13664-13680, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38968603

RESUMEN

The article demonstrated diverse binding modes of deprotonated 1,3-di(2-pyridinyl)-1,3-propanedione (HL) (κ2-[O,O]-, κ2-[N,O]-, and µ-bis-κ2-[N,O]-) on selective ruthenium platforms: Ru(acac)2 (dimeric [1]ClO4), Ru(bpy)2 (monomeric [2]ClO4), Ru(pap)2 (isomeric monomeric [3]ClO4/[4]ClO4, dimeric [5](ClO4)3), and Ru(PPh3)2(CO) (monomeric 6, isomeric dimeric [7]ClO4/[8]ClO4) (acac = acetylacetonate, bpy = 2,2'-bipyridine, pap = 2-phenylazopyridine). Structural authentication of the complexes revealed (i) diverse binding mode of L- including its unprecedented bridging mode in [8]ClO4, (ii) varying degrees of nonplanarity of L-, and (iii) development of 1D polymeric chains or dimeric/tetrameric forms via intermolecular π-π interactions. The preferential binding feature of L- in the complexes could also be corroborated by their calculated relative energies. The analysis of the multiredox steps of the complexes suggested severe mixing of metal-ligand frontier orbitals, which in effect pinpointed the involvement of L- in both the oxidative and reductive processes along the redox chain, suggesting its bidirectional noninnocence under the present coordination situations. Though α-diketone or ß-diketiminate was reported to activate O2 on the selective Ru(acac)2 platform, the inability of analogous ß-diketonate-derived [1]ClO4 could be attributed to its calculated greater HOMO-LUMO energy gap, which disfavored electron exchange at the metal(RuIII)-ligand(L-) interface to introduce the required unpaired spin at the ligand backbone toward the 3O2 activation event.

3.
Inorg Chem ; 63(22): 10312-10323, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38776455

RESUMEN

This article demonstrated the redox-noninnocent phenylene-linked bis(ß-diketiminate) (L2-)-bridged first example of isomeric diruthenium(III)-acac species (acac = acetylacetonate) and its ability to activate dioxygen. The coordination of deprotonated L2- to the {Ru(acac)2} in bis(bidentate) mode led to isomeric {(acac)2RuIII}2(µ-L2-) (S = 1, 1-trans/1-cis, green). 1 displayed Ru(III)-based anisotropic EPR in CH3CN but without the resolution of the forbidden (ΔMs = 2) g1/2 signal at 77 K. 1-cis, however, slowly transformed to the energetically favored 1-trans form. 1 underwent two-step oxygenation at the Cß sites of L2- to form the ß-diketiminate/α-ketodiimine (L'-)-bridged mixed valent (acac)2RuIII(µ-L'-)RuII(acac)2 (2, S = 1/2, pink) followed by bis(α-ketodiimine) (L″)-bridged isovalent (acac)2RuII(µ-L″)RuII(acac)2 (3, S = 0, red). The role of O2 toward 1 → 2/3 was corroborated by 18O2 labeling experiment. Redox steps of 1-3 varied as a function of isomeric identity, bridge, and metal oxidation state. The calculated MOs and Mulliken spin densities attributed to the noninnocence of L2-, L'-, and L″ in the respective complexes. Spectrophotometric monitoring of 1 → 2 revealed pseudo-first-order rate constants (105k s-1) of 1.8 (303 K), 3.5 (313 K), 7.7 (323 K), and 17.0 (333 K) and ΔH⧧/ΔS⧧/ΔG⧧ of 14.3 kcal mol-1/-33.1 cal mol-1 K-1/24.2 kcal mol-1 (298 K), respectively. Moreover, characterization of the short-lived blue intermediate obtained during the conversion of 1 → 2/3 upon exposure to O2 supported its valence tautomeric form (VT1, RuIII-L2--RuIII ↔ RuIII-L•--RuII, S = 1), which in effect facilitated oxygen activation at the ligand backbone.

4.
Inorg Chem ; 62(36): 14507-14511, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37646419

RESUMEN

This paper highlights the unique case of a tetracoordinated Ru(I) (15-electron) component in a structurally characterized discrete triruthenium setup, [(acac)2RuIIIL1(µ-RuI)L1RuII (acac)2](ClO4)2 ([3](ClO4)2, where acac = acetylacetonate; S = 1), which was formed along with the monomeric [(acac)2RuIII(L1)] ([1]ClO4; S = 1/2) and dimeric [{(acac)2RuIII}2(µ-L1)](ClO4)2 ([2](ClO4)2; S = 1) counterparts upon interaction of {Ru(acac)2} and L1 = 3,3'-dipyridin-2-yl-1,1'-bis(imidazo[1,5-a]pyridinyl).

5.
Inorg Chem ; 62(6): 2769-2783, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36719385

RESUMEN

The present article deals with the structurally and spectroelectrochemically characterized newer class of ruthenium-azoheteroarenes [RuII(Ph-trpy)(Cl)(L)]ClO4, [1]ClO4-[3]ClO4 (Ph-trpy: 4'-phenyl-2,2':6',2″-terpyridine; L1: 2,2'-azobis(benzothiazole) ([1]ClO4); L2: 2,2'-azobis(6-methylbenzothiazole) ([2]ClO4); L3: 2,2'-azobis(6-chlorobenzothiazole) ([3]ClO4)). A collective consideration of experimental (i.e., structural and spectroelectrochemical) and theoretical (DFT calculations) results of [1]ClO4-[3]ClO4 established selective stabilization of (i) the unperturbed azo (N═N)0 function of L, (ii) the exclusive presence of the isomeric form involving the N(azo) donor of L trans to Cl, and (iii) the presence of extended, hydrogen-bonded trimeric units in the asymmetric unit of [2]ClO4 (CH---O) via the involvement of ClO4- anions. The detailed electrochemical studies revealed metal-based oxidation of [RuII(Ph-trpy)(Cl)(L)]+ (1+-3+) to [RuIII(Ph-trpy)(Cl)(L)]2+ (12+-32+); however, the electronic form of the first reduced state (1-3) could be better represented by its mixed RuII(Ph-trpy)(Cl)(L•-)/RuIII(Ph-trpy)(Cl)(L2-) state. Both native (1+-3+) and reduced (1-3) states exhibited weak lower energy transitions within the range of 1000-1200 nm. Further, [1]ClO4-[3]ClO4 delivered an electrochemical OER (oxygen evolution reaction) process in alkaline medium on immobilizing them to a carbon cloth support, which divulged an amplified water oxidation feature for [2]ClO4 due to the presence of electron-donating methyl groups in the L2 backbone. The faster OER kinetics and high catalytic stability of [2]ClO4 could also be rationalized by its lowest Tafel slope (85 mV dec-1) and choronoamperometric experiment (stable up to 12 h), respectively, along with high Faradic efficiency (∼97%). A comparison of [2]ClO4 with the reported analogous ruthenium complexes furnished its excellent intrinsic water oxidation activity.

6.
Inorg Chem ; 62(20): 7779-7794, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37163348

RESUMEN

This article dealt with the ruthenium and osmium derivatives of isomeric 1H-indazole-3-carboxylic acid/2H-indazole-3-carboxylic acid (H2L1) and 1H-benzimidazole-2-carboxylic acid (H2L2) along with the π-acidic bpy (bpy = 2,2'-bipyridine) and pap (pap = 2-phenylazopyridine) co-ligands. It thus extended structurally authenticated monomeric ([(bpy)2RuII(HL1-)]ClO4 [1]ClO4, (pap)2RuII(L12-) 2, (bpy)2OsII(L12-) 3, (pap)2OsII(L12-) 4, (bpy)2RuII(L22-) 5, (bpy)2OsII(L22-) 8, and (pap)2OsII(L22-) 9) and dimeric ([(bpy)2RuII(µ-L22-)RuII(bpy)2](ClO4)2 [6](ClO4)2) complexes. It also described modified L2'2- (L2'2- = 2,2'-bisbenzimidazolate)-bridged [(pap)2RuII(µ-L2'2-)RuII(pap)2](ClO4)2 [7](ClO4)2, where L2'2- was developed selectively with the {Ru(pap)2} metal fragment via in situ intermolecular C-C coupling of the two units of decarboxylated benzimidazolate. Moreover, chemical oxidation (OsII to OsIII) of (bpy)2OsII(L12-) 3 (E0 = 0.11 V versus SCE) and (bpy)2OsII(L22-) 8 (E0 = 0.12 V versus SCE) by AgClO4 yielded unprecedented OsIII-AgI derived polymeric {[(bpy)2OsIII-L12--AgI(CH3CN)](ClO4)2}n {[10](ClO4)2}n and dimeric [(bpy)2OsIII-L22--AgI(CH3CN)](ClO4)2 [11](ClO4)2 complexes as a function of trans and cis orientations of the active N2 donor with special reference to the carboxylate O2 of L2-, respectively. Microscopic (FE-SEM, TEM-EDX, and AFM) and DLS experiments suggested a homogeneously dispersed hollow spherical shaped morphology of {[10](ClO4)2}n with an average particle size of 200-400 nm as well as its non-dissociative feature in the aprotic medium. Experimental (structure, spectroscopy, and electrochemistry) and theoretical (DFT/TD-DFT) explorations revealed a redox non-innocent feature of L2- in the present coordination situations and the selective anion sensing (X = F-, CN-, and OAc-) event of [1]ClO4 involving a free NH group at the backface of HL1-, which proceeded via the NH···X hydrogen bonding interaction.

7.
Inorg Chem ; 61(17): 6347-6352, 2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35438489

RESUMEN

The paper documents redox-triggered C-C coupling of acyclic N,N'-bis(2-pyridylmethylene)ethylenediamine (BPE) to yield 2,3-bis(2-pyridyl)pyrazine (DPP) upon coordination to an electron-rich {Ru(acac)2} (acac = acetylacetonate) unit. This led to DPP-bridged [{Ru(acac)2}2(DPP)]0/+ (2 and [2]ClO4) along with the unperturbed BPE-bridged [{Ru(acac)2}2(BPE)] (1). On the contrary, electron-poor {Ru(Cl)(H)(CO)(PPh3)3} yielded BPE-bridged [3](ClO4)2 as an exclusive product. Synergistic metal (Ru)-ligand (BPE) redox participation toward chemical noninnocence of the Schiff base ligand and DPP-mediated electronic communication in RuIIRuIII-derived [2]ClO4 are addressed.

8.
Inorg Chem ; 61(36): 14297-14312, 2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36044731

RESUMEN

This article deals with the S-S bond scission of the model substrate 2,2'-dithiodipyridine (DTDP) in the presence of a selective set of metal precursors: RuII(acac)2, [RuIICl2(PPh3)3], [RuIIHCl(CO)(PPh3)3], [RuII(H)2(CO)(PPh3)3], [RuII(bpy)2Cl2], [RuII(pap)2Cl2], [OsII(bpy)2Cl2], and [OsII(pap)2Cl2] (acac, acetylacetonate; bpy, 2,2'-bipyridine; pap, 2-phenylazopyridine). This led to the eventual formation of the corresponding mononuclear complexes containing the cleaved pyridine-2-thiolate unit in 1-4/[5]ClO4-[8]ClO4. The formation of the complexes was ascertained by their single-crystal X-ray structures, which also established sterically constrained four-membered chelate (average N1-M-S1 angle of 67.89°) originated from the in situ-generated pyridine-2-thiolate unit. Ruthenium(III)-derived one-electron paramagnetic complexes 1-2 (S = 1/2, magnetic moment/B.M. = 1.82 (1)/1.81(2)) exhibited metal-based anisotropic electron paramagnetic resonance (EPR) (Δg: 1/2 = 0.64/0.93, ⟨g⟩: 1/2 = 2.173/2.189) and a broad 1H nuclear magnetic resonance (NMR) signature due to the contact shift effect. The spectroelectrochemical and electronic structural aspects of the complexes were analyzed experimentally in combination with theoretical calculations of density functional theory (DFT and TD-DFT). The unperturbed feature of DTDP even in refluxing ethanol over a period of 10 h can be attributed to the active participation of the metal fragments in facilitating S-S bond cleavage in 1-4/[5]ClO4-[8]ClO4. It also revealed the following three probable pathways toward S-S bond cleavage of DTDP as a function of metal precursors: (i) the metal-to-ligand charge-transfer (MLCT) (RuII → σ* of DTDP)-driven metal oxidation (RuII → RuIII) process in the case of relatively electron-rich metal fragments {RuII(acac)2} or RuIICl2 in 1 or 2, respectively; (ii) metal hydride-assisted formation of 3 or 4 with the concomitant generation of H2; and (iii) S-S bond reduction with the simultaneous oxidation of the solvent benzyl alcohol to benzaldehyde.

9.
Inorg Chem ; 61(40): 16122-16140, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36149433

RESUMEN

The article deals with the newer classes of mononuclear: [(acac)2RuIII(H-Iz)(Iz-)] 1, [(acac)2RuIII(H-Iz)2]ClO4 [1]ClO4/[1']ClO4, and [(bpy)2RuII(H-Iz)(Iz-)]ClO4 [2]ClO4, mixed-valent unsymmetric dinuclear: [(acac)2RuIII(µ-Iz-)2RuII(bpy)2]ClO4 [3]ClO4, and heterotrinuclear: [(acac)2RuIII(µ-Iz-)2MII(µ-Iz-)2RuIII(acac)2] (M = Co:4a, Ni:4b, Cu:4c, and Zn:4d) complexes (H-Iz = indazole, Iz- = indazolate, acac = acetylacetonate, and bpy = 2,2'-bipyridine). Structural characterization of all the aforestated complexes established their molecular identities including varying binding modes (Na and Nb donors and 1H-indazole versus 2H-indazole) of the heterocyclic H-Iz/Iz- in the complexes. Unlike [1']ClO4 containing two NH protons at the backface of H-Iz units, the corresponding [1]ClO4 was found to be unstable due to the deprotonation of its positively charged quaternary nitrogen center, and this resulted in the eventual formation of the parent complex 1. A combination of experimental and density functional theory calculations indicated the redox noninnocent feature of Iz- in the complexes along the redox chain. The absence of intervalence charge transfer transition in the near-infrared region of the (Iz-)2-bridged unsymmetric mixed-valent RuIIIRuII state in [3]ClO4 suggested negligible intramolecular electronic coupling corresponding to a class I setup (Robin and Day classification). Heterotrinuclear complexes (4a-4d) exhibited varying spin configurations due to spin-spin interactions between the terminal Ru(III) ions and the central M(II) ion. Though both [3]ClO4 and 4a-4d displayed ligand (Iz-/Iz•)-based oxidation, reductions were preferentially taken place at the bpy and metal (RuIII/RuII) centers, respectively. Unlike 1 or [2]ClO4 containing one free NH proton at the backface of H-Iz, [1']ClO4 with two H-Iz units could selectively and effectively recognize F-, OAc-, and CN- among the tested anions: F-, OAc-, CN-, Cl-, Br-, I-, SCN-, HSO4-, and Η2PΟ4- in CH3CN via intermolecular NH···anion hydrogen bonding interaction. The difference in the sensing feature between [1']ClO4 and 1/[2]ClO4 could be rationalized by their pKa values of 8.4 and 11.3/10.8, respectively.


Asunto(s)
Compuestos Organometálicos , Rutenio , 2,2'-Dipiridil , Aniones/química , Electrónica , Indazoles , Ligandos , Nitrógeno , Compuestos Organometálicos/química , Protones , Rutenio/química
10.
Inorg Chem ; 61(39): 15735-15746, 2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36129962

RESUMEN

This article demonstrates the stabilization of ground- and redox-induced metal-to-ligand charge transfer excited states on coordination of azo-coupled bmpd(L4) [bmpd = (E)-1,2-bis(1-methyl-1H-pyrazol-3-yl)diazene; L4 = -N═N-] to the electron-rich {Ru(acac)2} (acac = acetylacetonate) unit in mononuclear RuII(acac)2(L4) (1) and diastereomeric dinuclear (acac)2Ru2.5(µ-L4•-)Ru2.5(acac)2 [rac, ΔΔ/ΛΛ (2a)/meso, ΔΛ (2b)] complexes, respectively. It also develops further one-step intramolecular electron transfer induced L4•- bridged isovalent higher analogue [(acac)2RuIII(µ-L4•-)RuIII(acac)2]ClO4 in diastereomeric forms, rac-[2a]ClO4/meso-[2b]ClO4. On the contrary, under identical reaction conditions electronically and sterically permuted bimpd [L5, (E)-1,2-bis(4-iodo-1-methyl-1H-pyrazol-3-yl)diazene)] delivered mononuclear RuII(acac)2(L5) (3) as an exclusive product. Further, the generation of unprecedented heterotrinuclear complex [(acac)2RuII(µ-L4)AgI(µ-L4)RuII(acac)2]ClO4 ([4]ClO4) involving unreduced L4 via the reaction of 1 and AgClO4 revealed the absence of any inner-sphere electron transfer (IET) as in precursor 1, which in turn reaffirmed an IET (at the interface of electron-rich Ru(acac)2 and acceptor L4) mediated stabilization of 2. Structural authentication of the complexes with special reference to the tunable azo distance (N═N, N-N•-, N-N2-) of L and their spectro-electrochemical events in accessible redox states including the reversible electron reservoir feature of 2 → 2+/2+ → 2 were evaluated in conjunction with density functional theory/time-dependent density functional theory calculations. The varying extent of IET as a function of heteroaromatics appended to the azo group of L (L1 = abpy = 2,2'-azobipyridine, L2 = abbt = 2,2'-azobis(benzothiazole), L3 = abim = azobis(1-methylbenzimidazole), L4 and L5, Schemes 1 & 2) in the Ru(acac)2-derived respective molecular setup has been addressed.

11.
Chemistry ; 27(17): 5461-5469, 2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33459444

RESUMEN

Epindolidione (H2 L), a heteroatom-modified analogue of tetracene and a structural isomer of indigo, forms dinuclear complexes with [RuX2 ]2+ , X=bpy (2,2'-bipyridine, [1]2+ ) or pap (2-phenylazopyridine, [2]2+ ), in its doubly deprotonated bridging form µ-L2- . The dications in compounds meso-[1](ClO4 )2 and meso-[2](ClO4 )2 , [X2 Ru(µ-L)RuX2 ](ClO4 )2 , contain five-membered chelate rings N-C-C-O-RuII with π bridged metals at an intramolecular distance of 7.19 Å. Stepwise reversible oxidation and reduction is mainly ligand centered (oxidation: L2- ; reduction: X), as deduced from EPR of one-electron oxidized and reduced intermediates and from UV/Vis/NIR spectroelectrochemistry, supported by TD-DFT calculation results. The results for [1](ClO4 )2 and [2](ClO4 )2 are qualitatively similar to the ones observed with the deprotonated indigo-bridged isomers with their six-membered chelate ring structures, confirming the suitability of both π systems for molecular electronics applications, low-energy absorptions, and multiple electron transfers.

12.
Inorg Chem ; 60(16): 11883-11887, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34310111

RESUMEN

Metal-coordination-driven C-C bond functionalization without involvement of the traditional route of oxidative addition, insertion, and reductive elimination has gained immense importance. In this context, the present Communication highlights the facile ring contraction process of the deprotonated bis-lawsone (L2-) to functionalized L12- upon coordination to {Os(bpy)2} or isomeric {Os(pap)2} (bpy = 2,2'-bipyridine and pap = 2-phenylazopyridine) in 1-3. Further, recognition of fractional redox noninnocence of L1 in 1+-3+ via experimental and theoretical events facilitated its inclusion in the redox noninnocent family.

13.
Inorg Chem ; 60(23): 18260-18269, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34762800

RESUMEN

The paper deals with the electronic impact of ancillary ligands on the varying redox features of azobis(benzothiazole) (abbt) in the newly introduced mononuclear ruthenium complexes [Ru(pap)2(abbt)]n (1n) and [Ru(bpy)2(abbt)]n (2n), where pap = 2-phenylazopyridine and bpy = 2,2'-bipyridine. In this regard, the complexes [RuII(pap)2(abbt•-)]ClO4 ([1]ClO4), [RuII(pap)2(abbt0)](ClO4)2 ([1](ClO4)2), [RuII(bpy)2(abbt0)](ClO4)2 ([2](ClO4)2), and [RuII(bpy)2(abbt•-)]ClO4 ([2]ClO4) were structurally and spectroscopically characterized. Unambiguous assignments of the aforestated radical and nonradical forms of abbt in 1+/2+ and 12+/22+, respectively, were made primarily based on their redox-sensitive azo (N═N) bond distances as well as by their characteristic electron paramagnetic resonance (EPR)/NMR signatures. Although the radical form of abbt•- was isolated as an exclusive product in the case of strongly π-acidic pap-derived 1+, the corresponding moderately π-acidic bpy ancillary ligand primarily delivered an oxidized form of abbt0 in 22+, along with the radical form in 2+ as a minor (<10%) component. The oxidized abbt0-derived [1](ClO4)2 was, however, obtained via the chemical oxidation of [1]ClO4. Both 1+ and 22+ displayed multiple closed by reversible redox processes (one oxidation O1 and four successive reductions R1-R4) within the potential window of ±2.0 V versus saturated calomel electrode. The involvement of metal-, ligand-, or metal/ligand-based frontier molecular orbitals along the redox chain was assigned based on the combined experimental (structure, EPR, and spectroelectrochemisry) and theoretical [density functional theory (DFT): molecular orbitals, Mulliken spin densities/time-dependent DFT] investigations. It revealed primarily ligand (abbt/pap or bpy)-based redox activities, keeping the metal ion as a simple spectator. Moreover, frontier molecular orbital analysis corroborated the initial isolation of the radical and nonradical species for the pap-derived 1+ and bpy-derived 22+ as well as facile reduction of pap and abbt in 1+ and 2+, respectively.

14.
Inorg Chem ; 60(13): 9607-9620, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34121388

RESUMEN

This article deals with the development of the unprecedented redox-mediated heterometallic coordination polymer {[RuIII(acac)2(µ-bis-η1-N,η1-N-BTD)2AgI(ClO4)]ClO4}n (3) via the oxidation of the monomeric building block cis-[RuII(acac)2(η1-N-BTD)2] (1) by AgClO4 (BTD = exodentate 2,1,3-benzothiadiazole, acac = acetylacetonate). Monomeric cis-[RuII(acac)2(η1-N-BTD)2] (1) and [RuII(acac)2(η1-N-BTD)(CH3CN)] (2) were simultaneously obtained from the electron-deficient BTD heterocycle and the electron-rich metal precursor RuII(acac)2(CH3CN)2 in refluxing CH3CN. Molecular identities of 1-3 were authenticated by their single-crystal X-ray structures as well as by solution spectral features. These results also reflected the elusive trigonal-planar geometry of the Ag ion in Ru-Ag-derived polymeric 3. Ru(III) (S = 1/2)-derived 3 displayed metal-based anisotropic EPR with ⟨g⟩/Δg = 2.12/0.56 and paramagnetically shifted 1H NMR. Spectroelectrochemistry in combination with DFT/TD-DFT calculations of 1n and 2n (n = 1+, 0, 1-) determined a metal-based (RuII/RuIII) oxidation and BTD-based reduction (BTD/BTD•-). The drastic decrease in the emission intensity and quantum yield but insignificant change in the lifetime of 3 with respect to 1 could be addressed in terms of static quenching and/or a paramagnetism-induced phenomenon. A homogeneously dispersed dumbbell-shaped morphology and the particle diameter of 3 were established by microscopic (TEM-EDX/SEM) and DLS analysis, respectively. Moreover, the dynamic nature of polymeric 3 was highlighted by its degradation to the η1-N-BTD coordinated monomeric fragment 1, which could also be followed spectrophotometrically in polar protic EtOH. Interestingly, both monomeric 1 and polymeric 3 exhibited efficient electrocatalytic activity toward water oxidation processes (OER, HER) on immobilization on an FTO support, which also divulged the better intrinsic water oxidation activity of 3 in comparison to 1.

15.
Inorg Chem ; 60(8): 5791-5803, 2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33829771

RESUMEN

The synthesis and characterization of the isomeric ruthenium complexes with the general formula cis- and trans-[Ru(trpy)(qc)X]n+ (trpy is 2,2':6',2″-terpyridine, qc is 8-quinolinecarboxylate, cis-1 and trans-1, X = Cl, n = 0; cis-2 and trans-2, X=OH2, n = 1) with respect to the relative disposition of the carboxylate and X ligands are reported. For comparison purposes, another set of ruthenium complexes with general formula cis- and trans-[Ru(trpy)(pic)(OH2)]+ (pic is 2-picolinate (cis-3, trans-3)) have been prepared. The complexes with a qc ligand show a more distorted geometry compared to the complexes with a pic ligand. In all of the cases, the trans isomers show lower potential values for all of the redox couples relative to the cis isomers. Complexes cis-2 and trans-2 with six-member chelate rings show higher catalytic activity than cis-3 and trans-3. Overall, it was shown that the electronic perturbation to the metal center exerted by different orientation and geometry of the ligands significantly influences both redox properties and catalytic performance.

16.
Angew Chem Int Ed Engl ; 60(20): 11206-11210, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33646569

RESUMEN

The impact of metal-to-ligand charge transfer towards the redox noninnocence of 2,2'-azobis(benzothiazole) (abbt) has been highlighted on coordination to {RuII (acac)2 } (acac=2,4-pentanedionato). It led to the authentication of a series of mononuclear and dinuclear complexes incorporating variable oxidation states of abbt (abbt0/.-/2- ). Mononuclear 1 was identified as [RuIII (abbt.- )], a MLCT excited state of [RuII (abbt)]. Dinuclear 2 was however recognized as two discrete redox isomers: (i) radical bridged mixed-valent meso-[Ru2.5 (µ-abbt.- )Ru2.5 ] (2a) and (ii) dianionic ligand bridged isovalent meso-[RuIII (µ-abbt2- )RuIII ] (2b), demonstrating unprecedented structural confirmation of valence tautomerism in azo-based ligand systems. A crystal structure of [2]ClO4 validated the formation of [RuIII (µ-abbt.- ) RuIII ]ClO4 . Analysis of electronic structural forms of 1 and 2 in accessible redox states via spectroelectrochemistry and DFT revealed their electron reservoir feature.

17.
Inorg Chem ; 59(2): 1355-1363, 2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31909598

RESUMEN

"Chemical noninnocence" of metal-coordinated 2-picolylamine (PA) derivatives has been introduced upon its reaction with the metal precursor [RuII(Cl)(H)(CO)(PPh3)3] under basic conditions. This in effect leads to the facile formation of metalated amide, imine, ring-cyclized pyrrole, and an N-dealkylated congener based on the fine-tuning of an amine nitrogen (Namine) and a methylene center (Cα) at the PA backbone. It develops oxygenated L1' in 1 and cyclized L4' in 4 upon switching of the Namine substituent of PA from aryl to an electrophilic pent-3-en-2-one moiety. On the other hand, imposing the substituent at the Cα position of PA modifies its reactivity profile, leading to a dehydrogenation (2/3) or N-dealkylation (6) process. The divergent reactivity profile of metalated PA is considered to proceed through a common dianionic intermediate. Further, a competitive scenario of C-H bond functionalization of coordinated PA versus the ligand-exchange process has been exemplified in the presence of external electrophile such as benzyl bromide or methylene iodide. Authentication of the product formation as well as elucidation of the reaction pathway has been addressed by their crystal structures and spectroscopic features in conjunction with the transition-state (TS) theory.

18.
Inorg Chem ; 59(7): 4397-4405, 2020 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-32150396

RESUMEN

π-Conjugated bridged isomeric diruthenium(II) complexes [(acac)2RuII(µ-DIPQD)RuII(acac)2], 1 (trans) and 2 (cis) (acac- = acetylacetonate, (8E,16E)-N8,N16-diphenylindeno[1,2-b]indeno[2',1':5,6]pyrazino[2,3-g]quinoxaline-8,16-diimine (trans-DIPQD), and (12E,16E)-N12,N16-diphenylindeno[1,2-b]indeno[1',2':5,6]pyrazino[2,3-g]quinoxaline-12,16-diimine (cis-DIPQD) were separated and structurally characterized. The structures of the rac (ΔΔ/ΛΛ) forms of 1 and 2 exhibit two units of {Ru(acac)2}, linked to adjacent pyrazine and imine nitrogen donors of the bridge (DIPQD) in trans and cis modes, with metal-metal separations of 9.050 and 6.330 Å, respectively. The packing diagrams of 1 and 2 revealed an intermolecular π···π stacking interaction (3.202-3.398 Å) involving the face-to-face arrangement of the aromatic rings of DIPQD in adjacent molecules and varying solid-state packing modes, slipped stacking in the former versus brick-layer stacking in the latter. The electronic forms associated with multiple reversible one-electron redox steps of 1 and 2 were addressed by DFT (MO composition, Mulliken spin density distribution), supported by EPR of intermediate paramagnetic states and by UV-vis-NIR spectroelectrochemistry in all redox states. The results reveal similar electronic forms along the redox series irrespective of their isomeric identities in 1 and 2, viz., primarily metal-based oxidations ([(acac)2RuII(µ-DIPQD)RuIII(acac)2]+, 1+/2+, S = 1/2; [(acac)2RuIII(µ-DIPQD)RuIII(acac)2]2+, 12+/22+, S = 1) and bridge-based reductions ([(acac)2RuII(µ-DIPQD•-)RuII(acac)2]-, 1•-/2•-, S = 1/2; [(acac)2RuII(µ-DIPQD2-)RuII(acac)2]2-, 12-/22-, S = 1). TD-DFT analysis of the electronic transitions in the complexes suggests bridge-targeted mixed metal/ligand-based multiple charge transfer transitions over the visible to NIR region in all redox states, while a weak band involving the radical bridge appeared in the long-wavelength region (∼2000 nm) in 1•-/2•-.

19.
Chemistry ; 25(41): 9737-9746, 2019 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-31125467

RESUMEN

In the recent years, there has been an emerging research interest in the domain of C-C bond-cleavage reactions. The present contribution deals with the redox-mediated dioxygen activation and C-C bond cleavage in a diruthenium complex [(acac)2 RuII (µ-L1)RuII (acac)2 ], 1 (acac=acetylacetonate) incorporating 2,2'-pyridil (L1) as the bridging ligand. The above process leads to a C-C-cleaved monomeric product [(acac)2 RuIII (pic- )], 2 (pic- =piconilate). Intriguingly, similar diastereomeric complexes [(acac)2 RuII (µ-L2)RuII (acac)2 ], meso (ΔΛ): 3 a and rac (ΔΔ/ΛΛ): 3 b, involving an analogous diimine bridge (L2=N1,N2-diphenyl-1,2-di(pyridin-2-yl)ethane-1,2-diimine), were stable towards such oxidative transformations. Electrochemical and spectroelectrochemical studies, in combination, establish the potential non-innocent feature of the 2,2'-Pyridil (L1) and its derivative (L2) both in oxidation and reduction processes. Additionally, theoretical calculations have been employed to verify the redox states and their behavior. Furthermore, transition state (TS) calculations at the M06L/6-31G*/LANL2DZ level of theory together with detailed kinetic studies outline a putative mechanism for the selective transformation of 1→2 involving the formation of an intermediate bearing peroxide linkage to complex 1.

20.
Inorg Chem ; 58(19): 12538-12541, 2019 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-31508951

RESUMEN

An unprecedented diastereomeric pair [meso, ΔΛ (1); rac, ΔΔ/ΛΛ (2)] involving a doubly oxido-carboxylato-bridged mixed-valent RuIIIRuIV (d5d4, S = 1/2) state in [(acac)2RuIII(µ-O)(µ-CH3COO)RuIV(acac)2] (acac = acetylacetonate) was structurally characterized. 1n and 2n (n = +, 0, -) display comparable spectroelectrochemical features for the accessible redox states.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA