Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanotechnology ; 32(42)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34256368

RESUMEN

Polymer nanocomposites (pNC) have attracted wide interests in electrical insulation applications. Compared to neat matrices or microcomposites, pNC provide significant improvements in combined electrical, mechanical and thermal properties. In the understanding of the reasons behind these improvements, a major role was attributed to the interphase, the interaction zone between the nanoparticles (NP) and the matrix. Because of their nanoscale dimensions, the interphase properties are mostly theoretically described but rarely experimentally characterized. The aim of this study is to propose a nanoscale measurement protocol in order to probe mechanical (Young modulus) and electrical (dielectric permittivity) interphase features using, respectively, the peak force quantitative nanomechanical (PF-QNM) and the electrostatic force microscopy (EFM) modes of the atomic force microscopy. Measurements are performed on polyimide/silicon nitride (Si3N4) nanocomposite and the effect of a silane coupling agent treatment of Si3N4NP is considered. In order to accurately probe mechanical properties in PF-QNM mode, the impacting parameters such as the applied force, the deformation and the topography are taken into account. The interphase region has shown a higher elastic modulus compared to the matrix and a higher width (WI) value for treated NP. From EFM measurements combined to a finite element model feeded with theWIvalues obtained from PF-QNM, the interphase permittivity is determined. The corresponding values are lower than the matrix one and similar for untreated and treated NP. This is in total agreement with its higher elastic modulus and implies that the interphase is a region around the NP where the polymer chains present a better organization and thus, a restricted mobility.

2.
Polymers (Basel) ; 13(12)2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34200956

RESUMEN

The interphase area appears to have a great impact on nanocomposite (NC) dielectric properties. However, the underlying mechanisms are still poorly understood, mainly because the interphase properties remain unknown. This is even more true if the temperature increases. In this study, a multiscale characterization of polyimide/silicon nitride (PI/Si3N4) NC dielectric properties is performed at various temperatures. Using a nanomechanical characterization approach, the interphase width was estimated to be 30 ± 2 nm and 42 ± 3 nm for untreated and silane-treated nanoparticles, respectively. At room temperature, the interphase dielectric permittivity is lower than that of the matrix. It increases with the temperature, and at 150 °C, the interphase and matrix permittivities reach the same value. At the macroscale, an improvement of the dielectric breakdown is observed at high temperature (by a factor of 2 at 300 °C) for NC compared to neat PI. The comparison between nano- and macro-scale measurements leads to the understanding of a strong correlation between interphase properties and NC ones. Indeed, the NC macroscopic dielectric permittivity is well reproduced from nanoscale permittivity results using mixing laws. Finally, a strong correlation between the interphase dielectric permittivity and NC breakdown strength is observed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA