Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(28): 12509-12519, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38963393

RESUMEN

Biogas produced from anaerobic digestion usually contains impurities, particularly with a high content of CO2 (15-60%), thus decreasing its caloric value and limiting its application as an energy source. H2-driven biogas upgrading using homoacetogens is a promising approach for upgrading biogas to biomethane and converting CO2 to acetate simultaneously. Herein, we developed a novel membrane biofilm reactor (MBfR) with H2 and biogas separately supplied via bubbleless hollow fiber membranes. The gas-permeable hollow fibers of the MBfR enabled high H2 and CO2 utilization efficiencies (∼98% and ∼97%, respectively) and achieved concurrent biomethane (∼94%) and acetate (∼450 mg/L/d) production. High-throughput 16S rRNA gene amplicon sequencing suggested that enriched microbial communities were dominated by Acetobacterium (38-48% relative abundance). In addition, reverse transcription quantitative PCR of the functional marker gene formyltetrahydrofolate synthetase showed that its expression level increased with increasing H2 and CO2 utilization efficiencies. These results indicate that Acetobacterium plays a key role in CO2 to acetate conversion. These findings are expected to facilitate energy-positive wastewater treatment and contribute to the development of a new solution to biogas upgrading.


Asunto(s)
Biopelículas , Biocombustibles , Reactores Biológicos , ARN Ribosómico 16S , Dióxido de Carbono/metabolismo , Acetatos/metabolismo
2.
Environ Res ; 252(Pt 2): 118899, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38604486

RESUMEN

The integration of electrokinetic and bioremediation (EK-BIO) represents an innovative approach for addressing trichloroethylene (TCE) contamination in low-permeability soil. However, there remains a knowledge gap in the impact of the inoculation approach on TCE dechlorination and the microbial response with the presence of co-existing substances. In this study, four 1-dimensional columns were constructed with different inoculation treatments. Monitoring the operation conditions revealed that a stabilization period (∼40 days) was required to reduce voltage fluctuation. The group with inoculation into the soil middle (Group B) exhibited the highest TCE dechlorination efficiency, achieving a TCE removal rate of 84%, which was 1.1-3.2 fold higher compared to the others. Among degraded products in Group B, 39% was ethylene. The physicochemical properties of the post-soil at different regions illustrated that dechlorination coincided with the Fe(III) and SO42- reduction, meaning that the EK-BIO system promoted the formation of a reducing environment. Microbial community analysis demonstrated that Dehalococcoides was only detected in the treatment of injection at soil middle or near the cathode, with abundance enriched by 2.1%-7.2%. The principal components analysis indicated that the inoculation approach significantly affected the evolution of functional bacteria. Quantitative polymerase chain reaction (qPCR) analysis demonstrated that Group B exhibited at least 2.8 and 4.2-fold higher copies of functional genes (tceA, vcrA) than those of other groups. In conclusion, this study contributes to the development of effective strategies for enhancing TCE biodechlorination in the EK-BIO system, which is particularly beneficial for the remediation of low-permeability soils.


Asunto(s)
Biodegradación Ambiental , Microbiología del Suelo , Contaminantes del Suelo , Tricloroetileno , Tricloroetileno/metabolismo , Contaminantes del Suelo/metabolismo , Permeabilidad , Suelo/química
3.
Environ Sci Technol ; 57(51): 21715-21726, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38079577

RESUMEN

Microbial methane oxidation coupled to a selenate reduction process has been proposed as a promising solution to treat contaminated water, yet the underlying microbial mechanisms are still unclear. In this study, a novel methane-based membrane bioreactor system integrating hollow fiber membranes for efficient gas delivery and ultrafiltration membranes for biomass retention was established to successfully enrich abundant suspended cultures able to perform methane-dependent selenate reduction under oxygen-limiting conditions. The microbial metabolic mechanisms were then systematically investigated through a combination of short-term batch tests, DNA-based stable isotope probing (SIP) microcosm incubation, and high-throughput sequencing analyses of 16S rRNA gene and functional genes (pmoA and narG). We confirmed that the methane-supported selenate reduction process was accomplished by a microbial consortia consisting of type-II aerobic methanotrophs and several heterotrophic selenate reducers. The mass balance and validation tests on possible intermediates suggested that methane was partially oxidized into acetate under oxygen-limiting conditions, which was consumed as a carbon source for selenate-reducing bacteria. High-throughput 16S rRNA gene sequencing, DNA-SIP incubation with 13CH4, and subsequent functional gene (pmoA and narG) sequencing results collectively proved that Methylocystis actively executed partial methane oxidation and Acidovorax and Denitratisoma were dominant selenate-reducing bacteria, thus forming a syntrophic partnership to drive selenate reduction. The findings not only advance our understanding of methane oxidation coupled to selenate reduction under oxygen-limiting conditions but also offer useful information on developing methane-based biotechnology for bioremediation of selenate-contaminated water.


Asunto(s)
Bacterias , Metano , Ácido Selénico/metabolismo , ARN Ribosómico 16S/genética , Bacterias/genética , Oxidación-Reducción , Isótopos/metabolismo , Reactores Biológicos , Oxígeno , Agua
4.
Environ Res ; 216(Pt 4): 114802, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36375502

RESUMEN

Nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) has been recognized as a sustainable process for simultaneous removal of nitrogen and methane. The metabolisms of denitrifying anaerobic methanotrophs, including Candidatus Methanoperedens and Candidatus Methylomirabilis, have been well studied. However, potential roles of heterotrophs co-existing with these anaerobic methanotrophs are generally overlooked. In this study, we pulse-fed methane and nitrate into an anaerobic laboratory sequencing batch bioreactor and enriched a mixed culture with stable nitrate removal rate (NRR) of ∼28 mg NO3--N L-1 d-1. Microbial community analysis indicates abundant heterotrophs, e.g., Arenimonas (5.3%-18.9%) and Fimbriimonadales ATM1 (6.4%), were enriched together with denitrifying anaerobic methanotrophs Ca. Methanoperedens (10.8%-13.2%) and Ca. Methylomirabilis (27.4%-34.3%). The results of metagenomics and batch tests suggested that the denitrifying anaerobic methanotrophs were capable of generating methane-derived intermediates (i.e., formate and acetate), which were employed by non-methanotrophic heterotrophs for denitrification and biomass growth. These findings offer new insights into the roles of heterotrophs in n-DAMO mixed culture, which may help to optimize n-DAMO process for nitrogen removal from wastewater.


Asunto(s)
Desnitrificación , Metano , Nitrógeno/metabolismo , Nitratos , Anaerobiosis , Reactores Biológicos , Oxidación-Reducción , Bacterias/metabolismo , Nitritos
5.
Sensors (Basel) ; 23(13)2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37447928

RESUMEN

This paper presents an RGB-NIR (Near Infrared) dual-modality technique to analyze the remote photoplethysmogram (rPPG) signal and hence estimate the heart rate (in beats per minute), from a facial image sequence. Our main innovative contribution is the introduction of several denoising techniques such as Modified Amplitude Selective Filtering (MASF), Wavelet Decomposition (WD), and Robust Principal Component Analysis (RPCA), which take advantage of RGB and NIR band characteristics to uncover the rPPG signals effectively through this Independent Component Analysis (ICA)-based algorithm. Two datasets, of which one is the public PURE dataset and the other is the CCUHR dataset built with a popular Intel RealSense D435 RGB-D camera, are adopted in our experiments. Facial video sequences in the two datasets are diverse in nature with normal brightness, under-illumination (i.e., dark), and facial motion. Experimental results show that the proposed method has reached competitive accuracies among the state-of-the-art methods even at a shorter video length. For example, our method achieves MAE = 4.45 bpm (beats per minute) and RMSE = 6.18 bpm for RGB-NIR videos of 10 and 20 s in the CCUHR dataset and MAE = 3.24 bpm and RMSE = 4.1 bpm for RGB videos of 60-s in the PURE dataset. Our system has the advantages of accessible and affordable hardware, simple and fast computations, and wide realistic applications.


Asunto(s)
Algoritmos , Cara , Frecuencia Cardíaca/fisiología , Movimiento (Física) , Iluminación , Fotopletismografía/métodos , Procesamiento de Señales Asistido por Computador
6.
Am J Emerg Med ; 60: 73-77, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35908299

RESUMEN

BACKGROUND: A key component of trauma system evaluation is the Injury Severity Score (ISS). The ISS is dependent on the AIS, and as AIS versions are updated this effects the number of patients within a health system which are considered severely injured (ISS >15). This study aims to analyse the changes comparing AIS1998 and AIS2015, and its impact on injury severity scoring and survival prediction model in a major trauma centre. METHODS: This retrospective study reviewed all blunt trauma admissions from 1 January 2020 to 31 December 2020 from the trauma registry of Prince of Wales Hospital, Hong Kong. Patients were manually double coded with AIS1998 and AIS2015 by the same experienced trauma nurse who have completed both AIS 1998 and AIS 2015 Courses. AIS patterns and Injury Severity Scores (ISS) derived from AIS 1998 and 2015 were compared using the Wilcoxon Signed Rank Test. The area under the receiving operator curve (AUROC) was compared based on the Trauma and Injury Severity Score (TRISS) model using AIS 1998 and AIS 2015. RESULTS: 739 patients were included. There were 34 deaths within 30 days (30-day mortality rate 4.6%). Patients coded with AIS2015 compared with AIS1998 had significant reductions in the classification of serious, severe and critical categories of AIS, with a substantial increase in the mild and moderate categories. The largest reduction was observed in the head and neck region (Z = -11.018, p < 0.001), followed by the chest (Z = -6.110, p < 0.001), abdomen (Z = -4.221, p < 0.001) and extremity regions (Z = -4.252, p < 0.001). There was a 27% reduction in number of cases with ISS >15 in AIS2015 compared with AIS1998. Rates of 30-day mortality, ICU admission, emergency operation and trauma team activation of ISS > 15 using AIS 1998 were similar to the cut off for New Injury Severity Score (NISS) >12 using AIS 2015. The AUROC from the TRISS (AIS2015) was 0.942, and not different from the AUROC for TRISS (AIS1998) of 0.936. The sensitivity and specificity were 93.9% and 82.1% for TRISS (AIS2015), and 93.9% and 76.0% for TRISS (AIS1998). CONCLUSION: Trauma centres should be aware of the impact of the AIS2015 update on the benchmarking of trauma care, and consider the need for updating the ISS cut off for major trauma definitions.


Asunto(s)
Centros Traumatológicos , Heridas y Lesiones , Escala Resumida de Traumatismos , Humanos , Puntaje de Gravedad del Traumatismo , Sistema de Registros , Estudios Retrospectivos , Índices de Gravedad del Trauma
7.
Environ Sci Technol ; 55(3): 2006-2015, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33434000

RESUMEN

Previous studies demonstrated that methane can be used as an electron donor to microbially remove various oxidized contaminants in groundwater. Natural gas, which is more widely available and less expensive than purified methane, is potentially an alternative source of methane. However, natural gas commonly contains a considerable amount of ethane (C2H6) and propane (C3H8), in addition to methane. It is important that these gaseous alkanes are also utilized along with methane to avoid emissions. Here, we demonstrate that perchlorate (ClO4-), a frequently reported contaminant in groundwater, can be microbially reduced to chloride (Cl-) driven by C2H6 or C3H8 under oxygen-limiting conditions. Two independent membrane biofilm reactors (MBfRs) supplied with C2H6 and C3H8, respectively, were operated in parallel to biologically reduce ClO4-. The continuous ClO4- removal during long-term MBfR operation combined with the concurrent C2H6/C3H8 consumption and ClO4- reduction in batch tests confirms that ClO4- reduction was associated with C2H6 or C3H8 oxidation. Polyhydroxyalkanoates (PHAs) were synthesized in the presence of C2H6 or C3H8 and were subsequently utilized for supporting ClO4- bio-reduction in the absence of gaseous alkanes. Analysis by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) showed that transcript abundance of bmoX (encoding alpha hydroxylase subunit of C2H6/C3H8 monooxygenase) was positively correlated to the consumption rates of C2H6/C3H8, while pcrA (encoding a catalytic subunit of perchlorate reductase) was positively correlated to the consumption of ClO4-. High-throughput sequencing targeting 16S rRNA, bmoX, and pcrA indicated that Mycobacterium was the dominant microorganism oxidizing C2H6/C3H8, while Dechloromonas may be the major perchlorate-reducing bacterium in the biofilms. These findings shed light on microbial ClO4- reduction driven by C2H6 and C3H8, facilitating the development of cost-effective strategies for ex situ groundwater remediation.


Asunto(s)
Etano , Percloratos , Reactores Biológicos , Oxidación-Reducción , Propano , ARN Ribosómico 16S/genética
8.
Appl Microbiol Biotechnol ; 103(21-22): 9119-9129, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31501939

RESUMEN

While previous work has demonstrated that antimonate (Sb(V)) can be bio-reduced with methane as the sole electron donor, the microorganisms responsible for Sb(V) reduction remain largely uncharacterized. Inspired by the recently reported Sb(V) reductase belonging to the dimethyl sulfoxide reductase (DMSOR) family, this study was undertaken to use metagenomics and metatranscriptomics to unravel whether any DMSOR family genes in the bioreactor had the potential for Sb(V) reduction. A search through metagenomic-assembled genomes recovered from the microbial community found that some DMSOR family genes, designated sbrA (Sb(V) reductase gene), were highly transcribed in four phylogenetically disparate assemblies. The putative catalytic subunits were found to be representatives of two distinct phylogenetic clades of reductases that were most closely related to periplasmic nitrate reductases and respiratory arsenate reductases, respectively. Putative operons containing sbrA possessed many other components, including genes encoding c-type cytochromes, response regulators, and ferredoxins, which together implement Sb(V) reduction. This predicted ability was confirmed by incubating the enrichment culture with 13C-labeled CH4 and Sb(V) in serum bottles, where Sb(V) was reduced coincident with the production of 13C-labeled CO2. Overall, these results increase our understanding of how Sb(V) can be bio-reduced in environments.


Asunto(s)
Antimonio/metabolismo , Bacterias/enzimología , Proteínas Bacterianas/genética , Oxidorreductasas/genética , Filogenia , Bacterias/clasificación , Bacterias/genética , Proteínas Bacterianas/metabolismo , Familia de Multigenes , Operón , Oxidorreductasas/metabolismo
9.
Biodegradation ; 30(5-6): 457-466, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31410606

RESUMEN

This study shows vanadate (V(V)) reduction in a methane (CH4) based membrane biofilm batch reactor when the concentration of dissolved oxygen (O2) was extremely low. V(IV) was the dominant products formed from V(V) bio-reduction, and majority of produced V(IV) transformed into precipitates with green color. Quantitative polymerase chain reaction and Illumina sequencing analysis showed that archaea methanosarcina were significantly enriched. Metagenomic predictive analysis further showed the enrichment of genes associated with reverse methanogenesis pathway, the key CH4-activating mechanism for anaerobic methane oxidation (AnMO), as well as the enrichment of genes related to acetate synthesis, in archaea. The enrichment of aerobic methanotrophs Methylococcus and Methylomonas implied their role in CH4 activation using trace level of O2, or their participation in V(V) reduction.


Asunto(s)
Metano , Vanadatos , Anaerobiosis , Biodegradación Ambiental , Biopelículas , Reactores Biológicos , Oxidación-Reducción
10.
Environ Sci Technol ; 52(15): 8693-8700, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30001126

RESUMEN

Employing a special anaerobic membrane biofilm batch reactor (MBBR), we demonstrated antimonate (Sb(V)) reduction using methane (CH4) as the sole electron donor. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Raman and photoluminescence (PL) spectra identified that Sb2O3 microcrystals were the main reduced products. The Sb(V) reduction rate increased continually over the 111-day experiment, which supports the enrichment of the microorganisms responsible for Sb(V) reduction to Sb(III). Copy numbers of the mcrA gene and archaeal and bacterial 16 S rRNA genes increased in parallel. Clone library and Illumina sequencing of 16S rRNA gene demonstrated that Methanosarcina became the dominant archaea in the biofilm, suggesting that Methanosarcina might play an important role in Sb(V) reduction in the CH4-based MBBR.


Asunto(s)
Biopelículas , Metano , Anaerobiosis , Archaea , Reactores Biológicos , Oxidación-Reducción , ARN Ribosómico 16S
11.
Environ Sci Technol ; 52(12): 7024-7031, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29785845

RESUMEN

This work demonstrates bromate (BrO3-) reduction in a methane (CH4)-based membrane biofilm reactor (MBfR), and it documents contrasting impacts of nitrate (NO3-) on BrO3- reduction, as well as formation of poly-ß-hydroxybutyrate (PHB), an internal C- and electron-storage material. When the electron donor, CH4, was in ample supply, NO3- enhanced BrO3- reduction by stimulating the growth of denitrifying bacteria ( Meiothermus, Comamonadaceae, and Anaerolineaceae) able to reduce BrO3- and NO3- simultaneously. This was supported by increases in denitrifying enzymes (e.g., nitrate reductase, nitrite reductase, nitrous-oxide reductase, and nitric-oxide reductase) through quantitative polymerase chain reaction (qPCR) analysis and metagenomic prediction of these functional genes. When the electron donor was in limited supply, NO3- was the preferred electron acceptor over BrO3- due to competition for the common electron donor; this was supported by the significant oxidation of stored PHB when NO3- was high enough to cause electron-donor limitation. Methanotrophs (e.g., Methylocystis, Methylomonas, and genera within Comamonadaceae) were implicated as the main PHB producers in the biofilms, and their ability to oxidize PHB mitigated the impacts of competition for CH4.


Asunto(s)
Reactores Biológicos , Bromatos , Biopelículas , Hidroxibutiratos , Metano , Nitratos , Poliésteres
12.
Environ Sci Technol ; 52(18): 10680-10688, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30106284

RESUMEN

For the first time, we demonstrated vanadate (V(V)) reduction in a membrane biofilm reactor (MBfR) using CH4 as the sole electron donor. The V(V)-reducing capability of the biofilm kept increasing, with complete removal of V(V) achieved when the influent surface loading of V(V) was 363 mg m-2 day-1. Almost all V(V) was reduced to V(IV) precipitates, which is confirmed by a scanning electron microscope coupled to energy dispersive X-ray spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy (XPS). Microbial community analysis revealed that denitrifiers Methylomonas and Denitratisoma might be the main genera responsible for V(V) reduction. The constant enrichment of Methylophilus suggests that the intermediate (i.e., methanol) from CH4 metabolism might be used as the electron carriers for V(V) bioreduction. Intrusion of V(V) (2-5 mg/L, at the surface loading of 150-378 mg m-2 day-1) into the biofilm stimulated the secretion of extracellular polymeric substances (EPS), but high loading of V(V) (10 mg/L, at the surface loading of 668 mg m-2 day-1) decreased the amount of EPS. Metagenomic prediction analysis established the strong correlation between the secretion of EPS and the microbial metabolism associated with V(V) reduction, tricarboxylic acid cycle (TCA) cycle, methane oxidation, and ATP production, and EPS might relieve the oxidative stress induced by high loading of V(V). Colorimetric determination and a three-dimensional excitation-emission matrix (3D-EEM) showed that tryptophan and humic acid-like substances might play important roles in microbial cell protection and V(V) binding. Fourier transform infrared (FTIR) spectroscopy identified hydroxyl (-OH) and carboxyl (COO-) groups in EPS as the candidate functional groups for binding V(V).


Asunto(s)
Metano , Vanadatos , Biopelículas , Reactores Biológicos , Matriz Extracelular de Sustancias Poliméricas
13.
Environ Sci Technol ; 50(11): 5832-9, 2016 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-27161770

RESUMEN

For the first time, we demonstrate chromate (Cr(VI)) bioreduction using methane (CH4) as the sole electron donor in a membrane biofilm reactor (MBfR). The experiments were divided into five stages lasting a total of 90 days, and each stage achieved a steady state for at least 15 days. Due to continued acclimation of the microbial community, the Cr(VI)-reducing capacity of the biofilm kept increasing. Cr(VI) removal at the end of the 90-day test reached 95% at an influent Cr(VI) concentration of 3 mg Cr/L and a surface loading of 0.37g of Cr m(-2) day(-1). Meiothermus (Deinococci), a potential Cr(VI)-reducing bacterium, was negligible in the inoculum but dominated the MBfR biofilm after Cr(VI) was added to the reactor, while Methylosinus, a type II methanotrophs, represented 11%-21% of the total bacterial DNA in the biofilm. Synergy within a microbial consortia likely was responsible for Cr(VI) reduction based on CH4 oxidation. In the synergy, methanotrophs fermented CH4 to produce metabolic intermediates that were used by the Cr(VI)-reducing bacteria as electron donors. Solid Cr(III) was the main product, accounting for more than 88% of the reduced Cr in most cases. Transmission electron microscope (TEM) and energy dispersive X-ray (EDS) analysis showed that Cr(III) accumulated inside and outside of some bacterial cells, implying that different Cr(VI)-reducing mechanisms were involved.


Asunto(s)
Biopelículas , Cromatos/metabolismo , Bacterias/metabolismo , Reactores Biológicos/microbiología , Cromo/metabolismo , Metano/metabolismo , Oxidación-Reducción
14.
Environ Sci Technol ; 50(18): 10179-86, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27562531

RESUMEN

Selenate (SeO4(2-)) bioreduction is possible with oxidation of a range of organic or inorganic electron donors, but it never has been reported with methane gas (CH4) as the electron donor. In this study, we achieved complete SeO4(2-) bioreduction in a membrane biofilm reactor (MBfR) using CH4 as the sole added electron donor. The introduction of nitrate (NO3(-)) slightly inhibited SeO4(2-) reduction, but the two oxyanions were simultaneously reduced, even when the supply rate of CH4 was limited. The main SeO4(2-)-reduction product was nanospherical Se(0), which was identified by scanning electron microscopy coupled to energy dispersive X-ray analysis (SEM-EDS). Community analysis provided evidence for two mechanisms for SeO4(2-) bioreduction in the CH4-based MBfR: a single methanotrophic genus, such as Methylomonas, performed CH4 oxidation directly coupled to SeO4(2-) reduction, and a methanotroph oxidized CH4 to form organic metabolites that were electron donors for a synergistic SeO4(2-)-reducing bacterium.


Asunto(s)
Biopelículas , Metano/metabolismo , Reactores Biológicos , Oxidación-Reducción , Ácido Selénico
15.
Environ Sci Technol ; 49(4): 2341-9, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25594559

RESUMEN

Using a CH4-based membrane biofilm reactor (MBfR), we studied perchlorate (ClO4(-)) reduction by a biofilm performing anaerobic methane oxidation coupled to denitrification (ANMO-D). We focused on the effects of nitrate (NO3(-)) and nitrite (NO2(-)) surface loadings on ClO4(-) reduction and on the biofilm community's mechanism for ClO4(-) reduction. The ANMO-D biofilm reduced up to 5 mg/L of ClO4(-) to a nondetectable level using CH4 as the only electron donor and carbon source when CH4 delivery was not limiting; NO3(-) was completely reduced as well when its surface loading was ≤ 0.32 g N/m(2)-d. When CH4 delivery was limiting, NO3(-) inhibited ClO4(-) reduction by competing for the scarce electron donor. NO2(-) inhibited ClO4(-) reduction when its surface loading was ≥ 0.10 g N/m(2)-d, probably because of cellular toxicity. Although Archaea were present through all stages, Bacteria dominated the ClO4(-)-reducing ANMO-D biofilm, and gene copies of the particulate methane mono-oxygenase (pMMO) correlated to the increase of respiratory gene copies. These pieces of evidence support that ClO4(-) reduction by the MBfR biofilm involved chlorite (ClO2(-)) dismutation to generate the O2 needed as a cosubstrate for the mono-oxygenation of CH4.


Asunto(s)
Reactores Biológicos , Metano/química , Consorcios Microbianos/fisiología , Percloratos/química , Anaerobiosis , Archaea/genética , Archaea/metabolismo , Bacterias/genética , Bacterias/metabolismo , Biopelículas , Reactores Biológicos/microbiología , Carbono/química , Desnitrificación , Electrones , Regulación de la Expresión Génica , Membranas Artificiales , Metano/metabolismo , Nitratos/metabolismo , Oxidación-Reducción , Percloratos/metabolismo , Permeabilidad , ARN Ribosómico 16S
17.
Environ Sci Technol ; 48(6): 3395-402, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24579788

RESUMEN

To study the effect of nitrate (NO3(-)) on selenate (SeO4(2-)) reduction, we tested a H2-based biofilm with a range of influent NO3(-) loadings. When SeO4(2-) was the only electron acceptor (stage 1), 40% of the influent SeO4(2-) was reduced to insoluble elemental selenium (Se(0)). SeO4(2-) reduction was dramatically inhibited when NO3(-) was added at a surface loading larger than 1.14 g of N m(-2) day(-1), when H2 delivery became limiting and only 80% of the input NO3(-) was reduced (stage 2). In stage 3, when NO3(-) was again removed from the influent, SeO4(2-) reduction was re-established and increased to 60% conversion to Se(0). SeO4(2-) reduction remained stable at 60% in stages 4 and 5, when the NO3(-) surface loading was re-introduced at ≤ 0.53 g of N m(-2) day(-1), allowing for complete NO3(-) reduction. The selenate-reducing microbial community was significantly reshaped by the high NO3(-) surface loading in stage 2, and it remained stable through stages 3-5. In particular, the abundance of α-Proteobacteria decreased from 30% in stage 1 to less than 10% of total bacteria in stage 2. ß-Proteobacteria, which represented about 55% of total bacteria in the biofilm in stage 1, increased to more than 90% of phylotypes in stage 2. Hydrogenophaga, an autotrophic denitrifier, was positively correlated with NO3(-) flux. Thus, introducing a NO3(-) loading high enough to cause H2 limitation and suppress SeO4(2-) reduction had a long-lasting effect on the microbial community structure, which was confirmed by principal coordinate analysis, although SeO4(2-) reduction remained intact.


Asunto(s)
Biopelículas , Reactores Biológicos/microbiología , Consorcios Microbianos , Nitratos/metabolismo , Ácido Selénico/metabolismo , Hidrógeno/metabolismo , Proteobacteria/metabolismo
18.
Water Res ; 253: 121330, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38387268

RESUMEN

Although microorganisms carrying copper-containing membrane-bound monooxygenase (CuMMOs), such as particulate methane monooxygenase (pMMO) and ammonia monooxygenase (AMO), have been extensively documented for their capability to degrade organic micropollutants (OMPs), the underlying reactive mechanism remains elusive. In this study, we for the first time demonstrate biogenic reactive oxygen species (ROS) play important roles in the degradation of sulfamethoxazole (SMX), a representative OMP, within a methane-fed biofilm. Highly-efficient and consistent SMX biodegradation was achieved in a CH4-based membrane biofilm reactor (MBfR), manifesting a remarkable SMX removal rate of 1210.6 ± 39.0 µg·L-1·d-1. Enzyme inhibition and ROS clearance experiments confirmed the significant contribution of ROS, which were generated through the catalytic reaction of pMMO and AMO enzymes, in facilitating SMX degradation. Through a combination of density functional theory (DFT) calculations, electron paramagnetic resonance (EPR) analysis, and transformation product detection, we elucidated that the ROS primarily targeted the aniline group in the SMX molecule, inducing the formation of aromatic radicals and its progressive mineralization. In contrast, the isoxazole-ring was not susceptible to electrophilic ROS attacks, leading to accumulation of 3-amino-5-methylisoxazole (3A5MI). Furthermore, microbiological analysis suggested Methylosarcina (a methanotroph) and Candidatus Nitrosotenuis (an ammonia-oxidizing archaea) collaborated as the SMX degraders, who carried highly conserved and expressed CuMMOs (pMMO and AMO) for ROS generation, thereby triggering the oxidative degradation of SMX. This study deciphers SMX biodegradation through a fresh perspective of free radical chemistry, and concurrently providing a theoretical framework for the advancement of environmental biotechnologies aimed at OMP removal.


Asunto(s)
Sulfametoxazol , Contaminantes Químicos del Agua , Sulfametoxazol/química , Especies Reactivas de Oxígeno , Oxidación-Reducción , Archaea/metabolismo , Estrés Oxidativo , Contaminantes Químicos del Agua/química
19.
Water Res ; 254: 121402, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38461600

RESUMEN

Bromate, a carcinogenic contaminant generated in water disinfection, presents a pressing environmental concern. While biological bromate reduction is an effective remediation approach, its implementation often necessitates the addition of organics, incurring high operational costs. This study demonstrated the efficient biological bromate reduction using H2/CO2 mixture as the feedstock. A membrane biofilm reactor (MBfR) was used for the efficient delivery of gases. Long-term reactor operation showed a high-level bromate removal efficiency of above 95 %, yielding harmless bromide as the final product. Corresponding to the short hydraulic retention time of 0.25 d, a high bromate removal rate of 4 mg Br/L/d was achieved. During the long-term operation, in situ production of volatile fatty acids (VFAs) by gas fermentation was observed, which can be regulated by controlling the gas flow. Three sets of in situ batch tests and two groups of ex situ batch tests jointly unravelled the mechanisms underpinning the efficient bromate removal, showing that the microbial bromate reduction was primarily driven by the VFAs produced from in situ gas fermentation. Microbial community analysis showed an increased abundance of Bacteroidota group from 4.0 % to 18.5 %, which is capable of performing syngas fermentation, and the presence of heterotrophic denitrifiers (e.g., Thauera and Brachymonas), which are known to perform bromate reduction. Together these results for the first time demonstrated the feasibility of using H2/CO2 mixture for bromate removal coupled with in situ VFAs production. The findings can facilitate the development of cost-effective strategies for groundwater and drinking water remediation.


Asunto(s)
Reactores Biológicos , Dióxido de Carbono , Fermentación , Bromatos , Ácidos Grasos Volátiles , Biopelículas
20.
J Hazard Mater ; 470: 134195, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38581872

RESUMEN

This study leveraged synthesis gas (syngas), a renewable resource attainable through the gasification of biowaste, to achieve efficient chromate removal from water. To enhance syngas transfer efficiency, a membrane biofilm reactor (MBfR) was employed. Long-term reactor operation showed a stable and high-level chromate removal efficiency > 95%, yielding harmless Cr(III) precipitates, as visualised by scanning electron microscopy and energy dispersive X-ray analysis. Corresponding to the short hydraulic retention time of 0.25 days, a high chromate removal rate of 80 µmol/L/d was attained. In addition to chromate reduction, in situ production of volatile fatty acids (VFAs) by gas fermentation was observed. Three sets of in situ batch tests and two groups of ex situ batch tests jointly unravelled the mechanisms, showing that biological chromate reduction was primarily driven by VFAs produced from in situ syngas fermentation, whereas hydrogen originally present in the syngas played a minor role. 16 S rRNA gene amplicon sequencing has confirmed the enrichment of syngas-fermenting bacteria (such as Sporomusa), who performed in situ gas fermentation leading to the synthesis of VFAs, and organics-utilising bacteria (such as Aquitalea), who utilised VFAs to drive chromate reduction. These findings, combined with batch assays, elucidate the pathways orchestrating synergistic interactions between fermentative microbial cohorts and chromate-reducing microorganisms. The findings facilitate the development of cost-effective strategies for groundwater and drinking water remediation and present an alternative application scenario for syngas.


Asunto(s)
Biopelículas , Reactores Biológicos , Cromatos , Membranas Artificiales , Cromatos/metabolismo , Fermentación , Contaminantes Químicos del Agua/metabolismo , Oxidación-Reducción , Ácidos Grasos Volátiles/metabolismo , Bacterias/metabolismo , Bacterias/genética , Hidrógeno/metabolismo , Gases/metabolismo , Biodegradación Ambiental
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA