Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Transgenic Res ; 24(2): 199-211, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25236862

RESUMEN

Porcine skin is frequently used as a substitute of human skin to cover large wounds in clinic practice of wound care. In our previous work, we found that transgenic expression of human cytoxicT-lymphocyte associated antigen4-immunoglobulin (hCTLA4Ig) in murine skin graft remarkably prolonged its survival in xenogeneic wounds without extensive immunosuppression in recipients, suggesting that transgenic hCTLA4Ig expression in skin graft may be an effective and safe method to prolong xenogeneic skin graft survival. In this work, using a transgene construct containing hCTLA4Ig coding sequence under the drive of human Keratine 14 (k14) promoter, hCTLA4Ig transgenic pigs were generated by somatic nuclear transfer. The derived transgenic pigs were healthy and exhibited no signs of susceptibility to infection. The hCTLA4Ig transgene was stably transmitted through germline over generations, and thereby a transgenic pig colony was established. In the derived transgenic pigs, hCTLA4Ig expression in skin was shown to be genetically stable over generations, and detected in heart, kidney and corneal as well as in skin. Transgenic hCTLA4Ig protein in pigs exhibited expected biological activity as it suppressed human lymphocyte proliferation in human mixed lymphocyte culture to extents comparable to those of commercially purchased purified hCTLA4Ig protein. In skin grafting from pigs to rats, transgenic porcine skin grafts exhibited remarkably prolonged survival compared to the wild-type skin grafts derived from the same pig strain (13.33 ± 3.64 vs. 6.25 ± 2.49 days, P < 0.01), further indicating that the transgenic hCTLA4Ig protein was biologically active and capable of extending porcine skin graft survival in xenogeneic wounds. The transgenic pigs generated in this work can be used as a reproducible resource to provide porcine skin grafts with extended survival for wound coverage, and also as donors to investigate the impacts of hCTLA4Ig on xenotransplantation of other organs (heart, kidney and corneal) due to the ectopic transgenic hCTLA4Ig expression.


Asunto(s)
Abatacept/biosíntesis , Animales Modificados Genéticamente , Técnicas de Transferencia Nuclear , Trasplante de Piel , Abatacept/genética , Animales , Supervivencia de Injerto , Humanos , Queratinas/genética , Ratones , Regiones Promotoras Genéticas , Ratas , Porcinos/genética , Trasplante Heterólogo
2.
Mol Reprod Dev ; 73(1): 77-82, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16224773

RESUMEN

Parthenogenetically activated (PA) embryos exhibit delayed development, a lower blastocyst rate, and less successful development in vitro compared to in vitro fertilized (IVF) embryos. To investigate the possible mechanisms for unsuccessful parthenogenetic development, this study analyzed the chromosome abnormalities and developmental potential of porcine PA embryos. Mature oocytes were electrically activated and cultured in Porcine Zygote Medium-3 (PZM3) supplemented with 3 mg/ml BSA for 6, 7, or 8 days. The percentage of PA blastocysts was lower than that of IVF embryos on days 6 and 7 (16.4 +/- 7.4 vs. 28.7 +/- 3.7; 10.9 +/- 2.8 vs. 21.5 +/- 4.7, P < 0.05; respectively), and the PA blastocysts had significantly fewer nuclei than IVF blastocysts (23.2 +/- 1.8 vs. 29.7 +/- 0.8; 29.7 +/- 3.3 vs. 32.0 +/- 2.4, P < 0.05). The percentage of abnormal PA embryos (including embryos with condensed nuclei, arrested embryos and fragmented embryos) was higher than that of IVF embryos (PA: 52.9 +/- 12.8 vs. 16.4 +/- 7.4 on day 6), and increased with culture time (71.9 +/- 12.1 vs. 10.9 +/- 2.8. on day 7,and 75.0 +/- 22.6 vs. 12.1 +/- 2.3 on day 8, P < 0.05). The Day-6 PA blastocysts (n = 147) were divided into three classes according to the total number of nuclei (<20, 20-39, >40) and into three groups according to the morphological diameter (<150, 150-180, >180 microm). Of the haploid blastocysts, 56.1% had less than 20 nuclei, and 71.5% were less than 150 microm in diameter. Of all (114) blastocysts suitable for analysis, 55.5% displayed chromosomal abnormalities. Among chromosomal abnormalities in PA blastocysts, haploid blastocysts were most prevalent (43.6%), while polyploidy (4.4%) and mixoploidy (7.7%) embryos were less prevalent. Chromosomal abnormalities of porcine PA embryos might contribute to a higher rate of abnormal embryonic development. We suggest that a careful consideration should be given when using the blastocysts with smaller size, and establishing the optimum culture condition for PA embryos development in vitro.


Asunto(s)
Aberraciones Cromosómicas , Partenogénesis/fisiología , Porcinos/embriología , Animales , Blastocisto/fisiología , Partenogénesis/genética , Porcinos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA