Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nat Mater ; 23(2): 230-236, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38172544

RESUMEN

Rhenium chalcohalide cluster compounds are a photoluminescent family of mixed-anion chalcohalide cluster materials. Here we report the new material Rb6Re6S8I8, which crystallizes in the cubic space group Fm[Formula: see text]m and contains isolated [Re6S8I6]4- clusters. Rb6Re6S8I8 has a band gap of 2.06(5) eV and an ionization energy of 5.51(3) eV, and exhibits broad photoluminescence (PL) ranging from 1.01 eV to 2.12 eV. The room-temperature PL exhibits a PL quantum yield of 42.7% and a PL lifetime of 77 µs (99 µs at 77 K). Rb6Re6S8I8 is found to be soluble in multiple polar solvents including N,N-dimethylformamide, which enables solution processing of the material into films with thickness under 150 nm. Light-emitting diodes based on films of Rb6Re6S8I8 were fabricated, demonstrating the potential for this family of materials in optoelectronic devices.

2.
J Am Chem Soc ; 145(29): 15997-16014, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37432784

RESUMEN

The alloyed lead/tin (Pb/Sn) halide perovskites have gained significant attention in the development of tandem solar cells and other optoelectronic devices due to their widely tunable absorption edge. To gain a better understanding of the intriguing properties of Pb/Sn perovskites, such as their anomalous bandgap's dependence on stoichiometry, it is important to deepen the understanding of their chemical behavior and local structure. Herein, we investigate a series of two-dimensional Ruddlesden-Popper (RP) and Dion-Jacobson (DJ) phase alloyed Pb/Sn bromide perovskites using butylammonium (BA) and 3-(aminomethyl)pyridinium (3AMPY) as the spacer cations: (BA)2(MA)n-1PbxSnn-xBr3n+1 (n = 1-3) and (3AMPY)(MA)n-1PbxSnn-xBr3n+1 (n = 1-3) through a solution-based approach. Our results show that the ratio and site preference of Pb/Sn atoms are influenced by the layer thickness (n) and spacer cations (A'), as determined by single-crystal X-ray diffraction. Solid-state 1H, 119Sn, and 207Pb NMR spectroscopy analysis shows that the Pb atoms prefer the outer layers in n = 3 members: (BA)2(MA)PbxSnn-xBr10 and (3AMPY)(MA)PbxSnn-xBr10. Layered 2D DJ alloyed Pb/Sn bromide perovskites (3AMPY)(MA)n-1PbxSnn-xBr3n+1 (n = 1-3) demonstrate much narrower optical band gaps, lower energy PL emission peaks, and longer carrier lifetimes compared to those of RP analogs. Density functional theory calculations suggest that Pb-rich alloys (Pb:Sn ∼4:1) for n = 1 compounds are thermodynamically favored over 50:50 (Pb:Sn ∼1:1) compositions. From grazing-incidence wide-angle X-ray scattering (GIWAXS), we see that films in the RP phase orient parallel to the substrate, whereas for DJ cases, random orientations are observed relative to the substrate.

3.
Proc Natl Acad Sci U S A ; 117(10): 5291-5297, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32098845

RESUMEN

Heterotropic allosteric activation of protein function, in which binding of one ligand thermodynamically activates the binding of another, different ligand or substrate, is a fundamental control mechanism in metabolism and as such has been a long-aspired capability in protein design. Here we show that greatly increasing the magnitude of a protein's net charge using surface supercharging transforms that protein into an allosteric ligand- and counterion-gated conformational molecular switch. To demonstrate this we first modified the designed helical bundle hemoprotein H4, creating a highly charged protein which both unfolds reversibly at low ionic strength and undergoes the ligand-induced folding transition commonly observed in signal transduction by intrinsically disordered proteins in biology. As a result of the high surface-charge density, ligand binding to this protein is allosterically activated up to 1,300-fold by low concentrations of divalent cations and the polyamine spermine. To extend this process further using a natural protein, we similarly modified Escherichia coli cytochrome b562 and the resulting protein behaves in a like manner. These simple model systems not only establish a set of general engineering principles which can be used to convert natural and designed soluble proteins into allosteric molecular switches useful in biodesign, sensing, and synthetic biology, the behavior we have demonstrated--functional activation of supercharged intrinsically disordered proteins by low concentrations of multivalent ions--may be a control mechanism utilized by Nature which has yet to be appreciated.


Asunto(s)
Grupo Citocromo b/química , Proteínas de Escherichia coli/química , Hemoproteínas/química , Proteínas Intrínsecamente Desordenadas/química , Ingeniería de Proteínas/métodos , Regulación Alostérica , Calcio/química , Cationes Bivalentes/química , Ligandos , Magnesio/química , Conformación Proteica , Pliegue de Proteína , Espermina/química , Termodinámica
4.
Angew Chem Int Ed Engl ; 62(14): e202301191, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36705521

RESUMEN

Synthesizing solids in molten fluxes enables the rapid diffusion of soluble species at temperatures lower than in solid-state reactions, leading to crystal formation of kinetically stable compounds. In this study, we demonstrate the effectiveness of mixed hydroxide and halide fluxes in synthesizing complex Sr/Ag/Se in mixed LiOH/LiCl. We have accessed a series of two-dimensional Sr(Ag1-x Lix )2 Se2 layered phases. With increased LiOH/LiCl ratio or reaction temperature, Li partially substituted Ag to form solid solutions of Sr(Ag1-x Lix )2 Se2 with x up to 0.45. In addition, a new type of intergrowth compound [Sr3 Se2 ][(Ag1-x Lix )2 Se2 ] was synthesized upon further reaction of Sr(Ag1-x Lix )2 Se2 with SrSe. Both Sr(Ag1-x Lix )2 Se2 and [Sr3 Se2 ][(Ag1-x Lix )2 Se2 ] exhibit a direct band gap, which increases with increasing Li substitution (x). Therefore, the band gap of Sr(Ag1-x Lix )2 Se2 can be precisely tuned via fine-tuning x that is controlled by only the flux ratio and temperature.

5.
J Am Chem Soc ; 144(28): 12789-12799, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35797169

RESUMEN

Lithium chalcogenides have been understudied, owing to the difficulty in managing the chemical reactivity of lithium. These materials are of interest as potential ion conductors and thermal neutron detectors. In this study, we describe three new cubic lithium copper chalcotitanates that crystallize in the P4̅3m space group. LiCu3TiS4, a = 5.5064(6) Å, and LiCu3TiSe4, a = 5.7122(7) Å, represent two members of a new stuffed diamond-type crystal structure, while LiCu3TiTe4, a = 5.9830(7) Å crystallized into a similar structure exhibiting lithium and copper mixed occupancy. These structures can be understood as hybrids of the zinc-blende and sulvanite structure types. In situ powder X-ray diffraction was utilized to construct a "panoramic" reaction map for the preparation of LiCu3TiTe4, facilitating the design of a rational synthesis and uncovering three new transient phases. LiCu3TiS4 and LiCu3TiSe4 are thermally stable up to 1000 °C under vacuum, while LiCu3TiTe4 partially decomposes when slowly cooled to 400 °C. Density functional theory calculations suggest that these compounds are indirect band gap semiconductors. The measured work functions are 4.77(5), 4.56(5), and 4.69(5) eV, and the measured band gaps are 2.23(5), 1.86(5), and 1.34(5) eV for the S, Se, and Te analogues, respectively.

6.
Inorg Chem ; 61(24): 9040-9046, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35658449

RESUMEN

The new heteroanionic compound In8S2.82Te6.18(Te2)3 crystallizes in the monoclinic space group C2/c with lattice parameters a = 14.2940(6) Å, b = 14.3092(4) Å, c = 14.1552(6) Å, and ß = 90.845(3)°. The three-dimensional (3D) framework of In8S2.82Te6.18(Te2)3 is composed of a complex 3D network of corner-connected InQ4 tetrahedra with three Te22- dumbbell dimers per formula unit. The optical bandgap is 1.12(2) eV and the work function is 5.15(5) eV. First-principles electronic structure calculations using density functional theory (DFT) indicate that this material has potential as a p-type thermoelectric material as it is a narrow bandgap semiconductor, incorporates several heavy elements, and has multiple overlapping bands near the valence band maximum.

7.
Inorg Chem ; 61(34): 13525-13531, 2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-35960253

RESUMEN

RbInSn2S6 and CsInSn2S6 are yellow two-dimensional (2D) semiconductors featuring anionic SnS2-type layers of edge-sharing (In/Sn)S6 octahedra. These structures are directly derived from the parent structure of SnS2 by replacement of Sn4+ atoms with A+ and In3+ atoms. The compounds crystallize, isotypic to the ion-exchange material KInSn2S6. They adopt the triclinic space group R3̅m (no. 166). The compounds have similar indirect optical band gaps of 2.31(5) eV for Rb and 2.47(5) eV Cs. The measured work functions for each material are ∼5.38 eV. The density functional theory-calculated effective mass values exhibit strong anisotropy due to the 2D nature of the crystal structures and in the case of CsInSn2S6 for hole carriers along the a, b, and c crystallographic directions are 0.30 m0, 0.34 m0, and 2.54 m0, respectively, while for electrons are 0.06 m0, 0.07 m0, and 0.47 m0, respectively.

8.
Inorg Chem ; 60(6): 3502-3513, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33635075

RESUMEN

We report a reactive flux technique using the common reagent P2S5 and metal precursors developed to circumvent the synthetic bottleneck for producing high-quality single- and mixed-metal two-dimensional (2D) thiophosphate materials. For the monometallic compound, M2P2S6 (M = Ni, Fe, and Mn), phase-pure materials were quickly synthesized and annealed at 650 °C for 1 h. Crystals of dimensions of several millimeters were grown for some of the metal thiophosphates using optimized heating profiles. The homogeneity of the bimetallic thiophosphates MM'P2S6 (M, M' = Ni, Fe, and Mn) was elucidated using energy-dispersive X-ray spectroscopy and Rietveld refinement. The quality of the selected materials was characterized by transmission electron microscopy and atomic force microscopy measurements. We report two novel bimetallic thiophosphates, MnCoP2S6 and FeCoP2S6. The Ni2P2S6 and MnNiP2S6 flux reactions were monitored in situ using variable-temperature powder X-ray diffraction to understand the formation reaction pathways. The phases were directly formed in a single step at approximately 375 °C. The work functions of the semiconducting materials were determined and ranged from 5.28 to 5.72 eV.

9.
Nursing ; 50(9): 51-54, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32826678

RESUMEN

Cardiac amyloidosis is a poorly understood cause of heart failure and is often undiagnosed. Recent advances in diagnostic testing and understanding of the disease have enhanced the ability of clinicians to detect this disease and provide patients with appropriate treatment. This article shares important information to help clinicians better understand transthyretin amyloidosis, including discussion on pathophysiology, diagnosis, prognosis, and management.


Asunto(s)
Neuropatías Amiloides Familiares/enfermería , Neuropatías Amiloides Familiares/fisiopatología , Humanos , Diagnóstico de Enfermería , Pronóstico , Enfermedades no Diagnosticadas
10.
Adv Mater ; 34(44): e2202709, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36062547

RESUMEN

Interplay between structural and photophysical properties of metal halide perovskites is critical to their utility in optoelectronics, but there is limited understanding of lattice response upon photoexcitation. Here, 2D perovskites butylammonium lead iodide, (BA)2 PbI4 , and phenethylammonium lead iodide, (PEA)2 PbI4 , are investigated using ultrafast transient X-ray diffraction as a function of optical excitation fluence to discern structural dynamics. Both powder X-ray diffraction and time-resolved photoluminescence linewidths narrow over 1 ns following optical excitation for the fluence range studied, concurrent with slight redshifting of the optical bandgaps. These observations are attributed to transient relaxation and ordering of distorted lead iodide octahedra stimulated mainly by electron-hole pair creation. The c axis expands up to 0.37% over hundreds of picoseconds; reflections sampling the a and b axes undergo one tenth of this expansion with the same timescale. Post-photoexcitation appearance of the (110) reflection in (BA)2 PbI4 would suggest a transient phase transition, however, through new single-crystal XRD, reflections are found that violate glide plane conditions in the reported Pbca structure. The static structure space group is reassigned as P21 21 21 . With this, a nonequilibrium phase transition is ruled out. These findings offer increased understanding of remarkable lattice response in 2D perovskites upon excitation.

13.
Nurse Pract ; 39(2): 42-7, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24441317

RESUMEN

Heart failure affects more than 5 million Americans with approximately 200,000 patients in end-stage disease that has failed traditional treatment. Historically, the only option for treatment was a heart transplant until left ventricular assist devices offered another option.


Asunto(s)
Insuficiencia Cardíaca/enfermería , Insuficiencia Cardíaca/cirugía , Ventrículos Cardíacos , Corazón Auxiliar , Trasplante de Corazón , Humanos , Enfermeras Practicantes , Guías de Práctica Clínica como Asunto , Derivación y Consulta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA