Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Crit Rev Toxicol ; 52(1): 1-31, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35275035

RESUMEN

The non-genotoxic synthetic pyrethroid insecticide permethrin produced hepatocellular adenomas and bronchiolo-alveolar adenomas in female CD-1 mice, but not in male CD-1 mice or in female or male Wistar rats. Studies were performed to evaluate possible modes of action (MOAs) for permethrin-induced female CD-1 mouse liver and lung tumor formation. The MOA for liver tumor formation by permethrin involves activation of the peroxisome proliferator-activated receptor alpha (PPARα), increased hepatocellular proliferation, development of altered hepatic foci, and ultimately liver tumors. This MOA is similar to that established for other PPARα activators and is considered to be qualitatively not plausible for humans. The MOA for lung tumor formation by permethrin involves interaction with Club cells, followed by a mitogenic effect resulting in Club cell proliferation, with prolonged administration producing Club cell hyperplasia and subsequently formation of bronchiolo-alveolar adenomas. Although the possibility that permethrin exposure may potentially result in enhancement of Club cell proliferation in humans cannot be completely excluded, there is sufficient information on differences in basic lung anatomy, physiology, metabolism, and biologic behavior of tumors in the general literature to conclude that humans are quantitatively less sensitive to agents that increase Club cell proliferation and lead to tumor formation in mice. The evidence strongly indicates that Club cell mitogens are not likely to lead to increased susceptibility to lung tumor development in humans. Overall, based on MOA evaluation it is concluded that permethrin does not pose a tumorigenic hazard for humans, this conclusion being supported by negative data from permethrin epidemiological studies.


Asunto(s)
Adenoma , Neoplasias Hepáticas , Neoplasias Pulmonares , Adenoma/metabolismo , Animales , Femenino , Humanos , Hígado , Neoplasias Hepáticas/inducido químicamente , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/metabolismo , Masculino , Ratones , PPAR alfa/metabolismo , PPAR alfa/farmacología , Permetrina/toxicidad , Ratas , Ratas Wistar
2.
Crit Rev Toxicol ; 51(5): 373-394, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34264181

RESUMEN

Many nongenotoxic chemicals have been shown to produce liver tumors in mice and/or rats by a mode of action (MOA) involving activation of the constitutive androstane receptor (CAR). Studies with phenobarbital (PB) and other compounds have identified the key events for this MOA: CAR activation; increased hepatocellular proliferation; altered foci formation; and ultimately the development of adenomas/carcinomas. In terms of human relevance, the pivotal species difference is that CAR activators are mitogenic agents in mouse and rat hepatocytes, but they do not stimulate increased hepatocellular proliferation in humans. This conclusion is supported by substantial in vitro studies with cultured rodent and human hepatocytes and also by in vivo studies with chimeric mice with human hepatocytes. Examination of the literature reveals many similarities in the hepatic effects and species differences between activators of rodent CAR and the peroxisome proliferator-activated receptor alpha (PPARα), with PPARα activators also not being mitogenic agents in human hepatocytes. Overall, a critical analysis of the available data demonstrates that the established MOA for rodent liver tumor formation by PB and other CAR activators is qualitatively not plausible for humans. This conclusion is supported by data from several human epidemiology studies.


Asunto(s)
Neoplasias Hepáticas , Animales , Receptor de Androstano Constitutivo , Hepatocitos , Humanos , Hígado , Ratones , Fenobarbital/toxicidad , Ratas , Receptores Citoplasmáticos y Nucleares/genética , Roedores
3.
Xenobiotica ; 51(1): 40-50, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32757971

RESUMEN

The kinetics of metabolism of deltamethrin (DLM) and cis- and trans-permethrin (CPM and TPM) was studied in male Sprague-Dawley rat and human liver microsomes. DLM metabolism kinetics was also studied in isolated rat hepatocytes, liver microsomes and cytosol. Apparent intrinsic clearance (CLint) values for the metabolism of DLM, CPM and TPM by cytochrome P450 (CYP) and carboxylesterase (CES) enzymes in rat and human liver microsomes decreased with increasing microsomal protein concentration. However, when apparent CLint values were corrected for nonspecific binding to allow calculation of unbound (i.e., corrected) CLint values, the unbound values did not vary greatly with microsomal protein concentration. Unbound CLint values for metabolism of 0.05-1 µM DLM in rat liver microsomes (CYP and CES enzymes) and cytosol (CES enzymes) were not significantly different from rates of DLM metabolism in isolated rat hepatocytes. This study demonstrates that the nonspecific binding of these highly lipophilic compounds needs to be taken into account in order to obtain accurate estimates of rates of in vitro metabolism of these pyrethroids. While DLM is rapidly metabolised in vitro, the hepatocyte membrane does not appear to represent a barrier to the absorption and hence subsequent hepatic metabolism of this pyrethroid.


Asunto(s)
Citosol/metabolismo , Hígado/metabolismo , Permetrina/metabolismo , Animales , Carboxilesterasa/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Hepatocitos/metabolismo , Humanos , Cinética , Masculino , Microsomas Hepáticos/metabolismo , Nitrilos/metabolismo , Piretrinas/metabolismo , Ratas , Ratas Sprague-Dawley
4.
Xenobiotica ; 50(12): 1434-1442, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32672501

RESUMEN

The metabolism of bifenthrin (BIF), ß-cyfluthrin (CYFL), λ-cyhalothrin (CYHA), cyphenothrin (CYPH) and esfenvalerate (ESF) was studied in liver microsomes, liver cytosol and plasma from male Sprague-Dawley rats aged 90, 21 and 15 days and from adult humans. Pyrethroid metabolism was also studied with some human expressed cytochrome P450 (CYP) and carboxylesterase (CES) enzymes. All five pyrethroids were metabolised by adult (90 day old) rat hepatic microsomal CYP and CES enzymes and by cytosolic CES enzymes. The pyrethroids were also metabolised by human liver microsomes and cytosol. Some species differences were observed. Pyrethroid metabolism by cytosolic CES enzymes contributes to the overall hepatic clearance of these compounds. CYFL, CYHA, CYPH and ESF were metabolised by rat plasma CES enzymes, whereas none of the pyrethroids were metabolised by human plasma. This study demonstrates that the ability of male rats to metabolise these pyrethroids by hepatic CYP and CES enzymes and plasma CES enzymes increases with age. In all instances, apparent intrinsic clearance values were lower in 15 than in 90 day old rats. All pyrethroids were metabolised by some of the human expressed CYP enzymes studied and apart from BIF were also metabolised by CES enzymes.


Asunto(s)
Carboxilesterasa/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Piretrinas/metabolismo , Animales , Humanos , Masculino , Microsomas Hepáticos/metabolismo , Nitrilos/metabolismo , Ratas
5.
Xenobiotica ; 50(3): 318-322, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31180273

RESUMEN

1. A number of chemicals have been shown to produce disruption of the thyroid gland, resulting in reduced thyroid hormone synthesis, by a mechanism involving inhibition of thyroid peroxidase (TPO) activity (EC 1.11.1.8).2. An assay was developed for rat thyroid gland microsomal TPO activity, employing L-tyrosine as the physiological substrate, with analysis of the formation of the 3-iodo-L-tyrosine (3MIT) metabolite by ultra-performance liquid chromatography-mass spectrometry-mass spectrometry.3. Formation of 3MIT was linear with respect to both rat thyroid gland microsomal protein concentration and incubation time, whereas only small quantities of 3,5-diodo-L-tyrosine were formed.4. Studies were performed with nine known TPO inhibitors. The most potent inhibitors were 3-amino-1,2,4-triazole, ethylene thiourea, methimazole and 6-propyl-2-thiouracil which had IC50 values (i.e. concentration to produce a 50% inhibition of enzyme activity) of 0.059, 0.791, 1.07 and 1.96 µM, respectively, whereas the least potent inhibitor was sodium perchlorate which had an IC50 value of 13,800 µM.5. For five inhibitors, where literature data were available, the observed IC50 values obtained in this study employing rat thyroid gland microsomes and L-tyrosine as substrate were similar to those previously reported using the spectrophotometric guaiacol oxidation assay.


Asunto(s)
Bioensayo/métodos , Inhibidores Enzimáticos/farmacología , Yoduro Peroxidasa/antagonistas & inhibidores , Xenobióticos/farmacología , Animales , Yoduro Peroxidasa/metabolismo , Ratas , Glándula Tiroides
6.
Xenobiotica ; 49(2): 227-238, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29424600

RESUMEN

The hepatic and thyroid gland effects of the constitutive androstane receptor (CAR) activator sodium phenobarbital (NaPB) and the pregnane X receptor (PXR) activator pregnenolone-16α-carbonitrile (PCN) were examined in male Sprague-Dawley wild-type (WT) and knockout (KO) rats lacking both hepatic CAR and PXR receptors (CAR KO/PXR KO rats). The treatment of WT rats for 7 d with 500 ppm NaPB in the diet and 100 mg/kg/d PCN by gavage resulted in increased relative liver weight, hepatocyte hypertrophy, increased hepatocyte replicative DNA synthesis (RDS) and induction of cytochrome P450 CYP2B and CYP3A subfamily enzymes. NaPB and PCN also induced thyroid gland follicular cell RDS and hepatic microsomal UDP-glucuronosyltransferase activity towards thyroxine as substrate. These effects were not observed in the liver and thyroid gland of CAR KO/PXR KO rats. Male C57BL/6 J (WT) and CAR KO/PXR KO mice were given 1000 ppm NaPB in the diet for 7 d. In WT, but not in CAR KO/PXR KO, mice NaPB treatment resulted in liver hypertrophy and induction of hepatocyte RDS and Cyp2b enzymes. These results suggest that the CAR KO/PXR KO rat and mouse models are useful experimental models for mode of action studies with rodent CAR activators.


Asunto(s)
Hígado/efectos de los fármacos , Fenobarbital/farmacología , Receptor X de Pregnano/genética , Carbonitrilo de Pregnenolona/farmacología , Receptores Citoplasmáticos y Nucleares/genética , Glándula Tiroides/efectos de los fármacos , Animales , Receptor de Androstano Constitutivo , Replicación del ADN/efectos de los fármacos , Técnicas de Inactivación de Genes , Masculino , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley
7.
Xenobiotica ; 49(4): 388-396, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29537356

RESUMEN

The metabolism of deltamethrin (DLM), cis-permethrin (CPM) and trans-permethrin (TPM) was studied in liver microsomes, liver cytosol and plasma from male Sprague-Dawley rats aged 15, 21 and 90 days and from adult humans. DLM and CPM were metabolised by rat hepatic microsomal cytochrome P450 (CYP) enzymes and to a lesser extent by microsomal and cytosolic carboxylesterase (CES) enzymes, whereas TPM was metabolised to a greater extent by CES enzymes. In human liver, DLM and TPM were mainly metabolised by CES enzymes, whereas CPM was metabolised by CYP and CES enzymes. The metabolism of pyrethroids by cytosolic CES enzymes contributes to the overall hepatic clearance of these compounds. DLM, CPM and TPM were metabolised by rat, but not human, plasma CES enzymes. This study demonstrates that the ability of male rats to metabolise DLM, CPM and TPM by hepatic CYP and CES enzymes and plasma CES enzymes increases with age. In all instances, apparent intrinsic clearance values were lower in 15 than in 90 day old rats. As pyrethroid-induced neurotoxicity is due to the parent compound, these results suggest that DLM, CPM and TPM may be more neurotoxic to juvenile than to adult rats.


Asunto(s)
Citosol/metabolismo , Hígado/metabolismo , Microsomas Hepáticos/metabolismo , Nitrilos/metabolismo , Permetrina/metabolismo , Plasma/metabolismo , Piretrinas/metabolismo , Animales , Humanos , Cinética , Masculino , Ratas Sprague-Dawley
8.
Xenobiotica ; 49(5): 521-527, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-29779438

RESUMEN

The metabolism of the pyrethroids deltamethrin (DLM), cis-permethrin (CPM) and trans-permethrin (TPM) was studied in human expressed cytochrome P450 (CYP) and carboxylesterase (CES) enzymes. DLM, CPM and TPM were metabolised by human CYP2B6 and CYP2C19, with the highest apparent intrinsic clearance (CLint) values for pyrethroid metabolism being observed with CYP2C19. Other CYP enzymes contributing to the metabolism of one or more of the three pyrethroids were CYP1A2, CYP2C8, CYP2C9*1, CYP2D6*1, CYP3A4 and CYP3A5. None of the pyrethroids were metabolised by CYP2A6, CYP2E1, CYP3A7 or CYP4A11. DLM, CPM and TPM were metabolised by both human CES1 and CES2 enzymes. Apparent CLint values for pyrethroid metabolism by CYP and CES enzymes were scaled to per gram of adult human liver using abundance values for microsomal CYP enzymes and for CES enzymes in liver microsomes and cytosol. TPM had the highest and CPM the lowest apparent CLint values for total metabolism (CYP and CES enzymes) per gram of adult human liver. Due to their higher abundance, all three pyrethroids were extensively metabolised by CES enzymes in adult human liver, with CYP enzymes only accounting for 2%, 10% and 1% of total metabolism for DLM, CPM and TPM, respectively.


Asunto(s)
Carboxilesterasa/química , Sistema Enzimático del Citocromo P-450/química , Nitrilos/química , Permetrina/química , Piretrinas/química , Carboxilesterasa/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Humanos , Nitrilos/farmacocinética , Permetrina/farmacocinética , Piretrinas/farmacocinética , Estereoisomerismo
9.
Drug Metab Dispos ; 45(5): 468-475, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28228413

RESUMEN

Predicting age-specific metabolism is important for evaluating age-related drug and chemical sensitivity. Multiple cytochrome P450s and carboxylesterase enzymes are responsible for human pyrethroid metabolism. Complete ontogeny data for each enzyme are needed to support in vitro to in vivo extrapolation (IVIVE). This study was designed to determine age-dependent human hepatic CYP2C8 expression, for which only limited ontogeny data are available, and to further define CYP1A2 ontogeny. CYP2C8 and 1A2 protein levels were measured by quantitative Western blotting using liver microsomal samples prepared from 222 subjects with ages ranging from 8 weeks gestation to 18 years after birth. The median CYP2C8 expression was significantly greater among samples from subjects older than 35 postnatal days (n = 122) compared with fetal samples and those from very young infants (fetal to 35 days postnatal, n = 100) (0.00 vs. 13.38 pmol/mg microsomal protein; p < 0.0001). In contrast, the median CYP1A2 expression was significantly greater after 15 months postnatal age (n = 55) than in fetal and younger postnatal samples (fetal to 15 months postnatal, n = 167) (0.0167 vs. 2.354 pmol/mg microsomal protein; p < 0.0001). CYP2C8, but not CYP1A2, protein levels significantly correlated with those of CYP2C9, CYP2C19, and CYP3A4 (p < 0.001), consistent with CYP2C8 and CYP1A2 ontogeny probably being controlled by different mechanisms. This study provides key data for the physiologically based pharmacokinetic model-based prediction of age-dependent pyrethroid metabolism, which will be used for IVIVE to support pyrethroid risk assessment for early life stages.


Asunto(s)
Envejecimiento/metabolismo , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP2C8/genética , Expresión Génica , Hígado/metabolismo , Microsomas Hepáticos/metabolismo , Adolescente , Adulto , Envejecimiento/genética , Niño , Preescolar , Femenino , Desarrollo Fetal/genética , Ontología de Genes , Edad Gestacional , Humanos , Técnicas In Vitro , Lactante , Recién Nacido , Hígado/embriología , Hígado/enzimología , Masculino , Microsomas Hepáticos/enzimología , Medición de Riesgo , Xenobióticos/metabolismo , Adulto Joven
11.
Crit Rev Toxicol ; 44(1): 64-82, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24180433

RESUMEN

The constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are important nuclear receptors involved in the regulation of cellular responses from exposure to many xenobiotics and various physiological processes. Phenobarbital (PB) is a non-genotoxic indirect CAR activator, which induces cytochrome P450 (CYP) and other xenobiotic metabolizing enzymes and is known to produce liver foci/tumors in mice and rats. From literature data, a mode of action (MOA) for PB-induced rodent liver tumor formation was developed. A MOA for PXR activators was not established owing to a lack of suitable data. The key events in the PB-induced liver tumor MOA comprise activation of CAR followed by altered gene expression specific to CAR activation, increased cell proliferation, formation of altered hepatic foci and ultimately the development of liver tumors. Associative events in the MOA include altered epigenetic changes, induction of hepatic CYP2B enzymes, liver hypertrophy and decreased apoptosis; with inhibition of gap junctional intercellular communication being an associative event or modulating factor. The MOA was evaluated using the modified Bradford Hill criteria for causality and other possible MOAs were excluded. While PB produces liver tumors in rodents, important species differences were identified including a lack of cell proliferation in cultured human hepatocytes. The MOA for PB-induced rodent liver tumor formation was considered to be qualitatively not plausible for humans. This conclusion is supported by data from a number of epidemiological studies conducted in human populations chronically exposed to PB in which there is no clear evidence for increased liver tumor risk.


Asunto(s)
Neoplasias Hepáticas/patología , Hígado/efectos de los fármacos , Fenobarbital/toxicidad , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Hidrocarburo de Aril Hidroxilasas , Proliferación Celular/efectos de los fármacos , Receptor de Androstano Constitutivo , Citocromo P-450 CYP2B6 , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Neoplasias Hepáticas/inducido químicamente , Receptor X de Pregnano , Receptores de Esteroides/metabolismo , Xenobióticos/toxicidad
12.
Toxicology ; 505: 153828, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38740169

RESUMEN

The fungicide fluxapyroxad (BAS 700 F) has been shown to significantly increase the incidence of liver tumours in male Wistar rats at dietary levels of 1500 and 3000 ppm and in female rats at a dietary level of 3000 ppm via a non-genotoxic mechanism. In order to elucidate the mode of action (MOA) for fluxapyroxad-induced rat liver tumour formation a series of in vivo and in vitro investigative studies were undertaken. The treatment of male and female Wistar rats with diets containing 0 (control), 50, 250, 1500 and 3000 ppm fluxapyroxad for 1, 3, 7 and 14 days resulted in a dose-dependent increases in relative weight at 1500 and 3000 ppm from day 3 onwards in both sexes, with an increase in relative liver weight being also observed in male rats given 250 ppm fluxapyroxad for 14 days. Examination of liver sections revealed a centrilobular hepatocyte hypertrophy in some fluxapyroxad treated male and female rats. Hepatocyte replicative DNA synthesis (RDS) was significantly increased in male rats given 1500 and 3000 ppm fluxapyroxad for 3 and 7 days and in female rats given 50-3000 ppm fluxapyroxad for 7 days and 250-3000 ppm fluxapyroxad for 3 and 14 days; the maximal increases in RDS in both sexes being observed after 7 days treatment. The treatment of male and female Wistar rats with 250-3000 ppm fluxapyroxad for 14 days resulted in significant increases in hepatic microsomal total cytochrome P450 (CYP) content and CYP2B subfamily-dependent enzyme activities. Male Wistar rat hepatocytes were treated with control medium and medium containing 1-100 µM fluxapyroxad or 500 µM sodium phenobarbital (NaPB) for 4 days. Treatment with fluxapyroxad and NaPB increased CYP2B and CYP3A enzyme activities and mRNA levels but had little effect on markers of CYP1A and CYP4A subfamily enzymes and of the peroxisomal fatty acid ß-oxidation cycle. Hepatocyte RDS was significantly increased by treatment with fluxapyroxad, NaPB and 25 ng/ml epidermal growth factor (EGF). The treatment of hepatocytes from two male human donors with 1-100 µM fluxapyroxad or 500 µM NaPB for 4 days resulted in some increases in CYP2B and CYP3A enzyme activities and CYP mRNA levels but had no effect on hepatocyte RDS, whereas treatment with EGF resulted in significant increase in RDS in both human hepatocyte preparations. Hepatocytes from male Sprague-Dawley wild type (WT) and constitutive androstane receptor (CAR) knockout (CAR KO) rats were treated with control medium and medium containing 1-16 µM fluxapyroxad or 500 µM NaPB for 4 days. While both fluxapyroxad and NaPB increased CYP2B enzyme activities and mRNA levels in WT hepatocytes, only minor effects were observed in CAR KO rat hepatocytes. Treatment with both fluxapyroxad and NaPB only increased RDS in WT and not in CAR KO rat hepatocytes, whereas treatment with EGF increased RDS in both WT and CAR KO rat hepatocytes. In conclusion, a series of in vivo and in vitro investigative studies have demonstrated that fluxapyroxad is a CAR activator in rat liver, with similar properties to the prototypical CAR activator phenobarbital. A robust MOA for fluxapyroxad-induced rat liver tumour formation has been established. Based on the lack of effect of fluxapyroxad on RDS in human hepatocytes, it is considered that the MOA for fluxapyroxad-induced liver tumour formation is qualitatively not plausible for humans.


Asunto(s)
Receptor de Androstano Constitutivo , Fungicidas Industriales , Hepatocitos , Ratas Wistar , Receptores Citoplasmáticos y Nucleares , Animales , Masculino , Femenino , Ratas , Fungicidas Industriales/toxicidad , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Humanos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/patología , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Relación Dosis-Respuesta a Droga , Tamaño de los Órganos/efectos de los fármacos , Neoplasias Hepáticas Experimentales/inducido químicamente , Neoplasias Hepáticas Experimentales/patología , Neoplasias Hepáticas Experimentales/metabolismo , Replicación del ADN/efectos de los fármacos , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología
13.
Xenobiotica ; 43(1): 41-53, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23131042

RESUMEN

1. Precision-cut liver slices are a valuable in vitro model system to study the metabolism and toxicity of xenobiotics. Liver slices retain tissue architecture so that all cell types are present and intercellular communication between the various cell types is retained. 2. Precision-cut liver slices from humans and other species have been used to study pathways of phase I (e.g. cytochrome P450-dependent biotransformations) and II (e.g. conjugation with D-glucuronic acid, sulphate and glutathione) metabolism of a wide range of xenobiotics. 3. Liver slices can also be employed to investigate the induction and inhibition of xenobiotic metabolizing enzymes and to obtain kinetic data on the rates of metabolism of xenobiotics. 4. Precision-cut liver slices from humans and other species have been used to study the toxicity of a wide variety of xenobiotics. Toxicity can be assessed by various techniques including gene expression, morphological examination and a wide range of biochemical endpoints. 5. Precision-cut liver slices can be utilized to examine species differences in hepatic xenobiotic metabolism and xenobiotic-induced toxicity, thus permitting comparisons between animal species and humans.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Hígado/enzimología , Modelos Biológicos , Xenobióticos/efectos adversos , Xenobióticos/farmacocinética , Animales , Evaluación Preclínica de Medicamentos/métodos , Humanos , Cinética , Hígado/patología , Técnicas de Cultivo de Órganos , Xenobióticos/farmacología
14.
J Proteome Res ; 10(10): 4513-21, 2011 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-21770373

RESUMEN

Consumption of cruciferous vegetables (CVs) is inversely correlated to many human diseases including cancer (breast, lung, and bladder), diabetes, and cardiovascular and neurological disease. Presently, there are no readily measurable biomarkers of CV consumption and intake of CVs has relied on dietary recall. Here, biomarkers of CV intake were identified in the urine of 20 healthy Caucasian adult males using (1)H NMR spectroscopy with multivariate statistical modeling. The study was separated into three phases of 14 days: a run-in period with restricted CV consumption (phase I); a high CV phase where participants consumed 250 g/day of both broccoli and Brussels sprouts (phase II); a wash-out phase with a return to restricted CV consumption (phase III). Each study participant provided a complete cumulative urine collection over 48 h at the end of each phase; a spot urine (U0), 0-10 h (U0-10), 10-24 h (U10-24), and 24-48 h (U24-48) urine samples. Urine samples obtained after consumption of CVs were differentiated from low CV diet samples by four singlet (1)H NMR spectroscopic peaks, one of which was identified as S-methyl-l-cysteine sulfoxide (SMCSO) and the three other peaks were tentatively identified as other metabolites structurally related to SMCSO. These stable urinary biomarkers of CV consumption will facilitate future assessment of CVs in nutritional population screening and dietary intervention studies and may correlate to population health outcomes.


Asunto(s)
Biomarcadores/metabolismo , Biomarcadores/orina , Metabolómica/métodos , Verduras/metabolismo , Adulto , Brassicaceae/metabolismo , Cisteína/análogos & derivados , Cisteína/química , Dieta , Humanos , Análisis de los Mínimos Cuadrados , Espectroscopía de Resonancia Magnética/métodos , Masculino , Análisis de Componente Principal , Estereoisomerismo , Urinálisis/métodos
15.
Toxicol Sci ; 184(1): 15-32, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34427685

RESUMEN

Permethrin has been shown to increase lung adenomas in female CD-1 mice, but not in male mice or Wistar rats. The proposed mode of action (MOA) for permethrin-induced female mouse lung tumor formation involves morphological changes in Club cells; increased Club cell proliferation; increased Club cell hyperplasia, and lung tumor formation. In this study, the treatment of female CD-1 mice with tumorigenic doses (2500 and 5000 ppm) of permethrin, but not with a nontumorigenic dose (20 ppm), for 14 and/or 28 days increased Club cell replicative DNA synthesis. Global gene expression analysis of female mouse lung samples demonstrated that permethrin treatment up-regulated 3 genes associated with cell proliferation, namely aldehyde dehydrogenase 3a1 (Aldh3a1), oxidative stress-induced growth inhibitor 1, and thioredoxin reductase 1. Treatment with 2500 and 5000 ppm, but not 20 ppm, permethrin for 7 days produced significant increases in mRNA levels of these 3 genes. Immunohistochemical analysis demonstrated that Club cell secretory protein, CYP2F2, and ALDH3A1 colocalized in Club cells; confirmed by flow cytometry analysis of lung cells employing KI67 as a cell proliferation marker. Overall, the present data extend the proposed MOA by demonstrating that Club cells are the primary initial target of permethrin administration in female mouse lungs. As humans are quantitatively much less sensitive to agents that increase Club cell proliferation and lung tumor formation in mice, it is most likely that permethrin could not produce lung tumors in humans. This conclusion is supported by available negative epidemiological data from several studies.


Asunto(s)
Neoplasias Pulmonares , Permetrina , Animales , Bronquiolos/patología , Células Epiteliales/metabolismo , Femenino , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Ratones , Permetrina/toxicidad , Ratas , Ratas Wistar
16.
Chem Res Toxicol ; 23(4): 788-801, 2010 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-20192249

RESUMEN

A targeted liquid chromatography/tandem mass spectrometry-based metabolomics type approach, employing a triple stage quadrupole mass spectrometer in the product ion scan and selected reaction monitoring modes, was established to profile 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), and their principal metabolites in the urine of omnivores. A mixed-mode reverse phase cation exchange resin enrichment procedure was employed to isolate MeIQx and its oxidized metabolites, 2-amino-8-(hydroxymethyl)-3-methylimidazo[4,5-f]quinoxaline (8-CH(2)OH-IQx) and 2-amino-3-methylimidazo[4,5-f]quinoxaline-8-carboxylic acid (IQx-8-COOH), which are produced by cytochrome P450 1A2 (P450 1A2). The phase II conjugates N(2)-(beta-1-glucosiduronyl)-2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline and N(2)-(3,8-dimethylimidazo[4,5-f]quinoxalin-2-yl)-sulfamic acid were measured indirectly, following acid hydrolysis to form MeIQx. The enrichment procedure permitted the simultaneous analysis of PhIP, N(2)-(beta-1-glucosidurony1)-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, N3-(beta-1-glucosidurony1)-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, 2-amino-1-methyl-6-(4'-hydroxy)-phenylimidazo[4,5-b]pyridine (4'-HO-PhIP), and the isomeric N(2)- and N3-glucuronide conjugates of the carcinogenic metabolite, 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine (HONH-PhIP), which is formed by P450 1A2. The limit of quantification (LOQ) for MeIQx, PhIP, and 4'-HO-PhIP was approximately 5 pg/mL; the LOQ values for 8-CH(2)OH-IQx and IQx-8-COOH were, respectively, <15 and <25 pg/mL, and the LOQ values for the glucuronide conjugates of PhIP and HONH-PhIP were 50 pg/mL. The metabolism was extensive; less than 9% of the dose was eliminated in urine as unaltered MeIQx, and <1% was eliminated as unaltered PhIP. Phase II conjugates of the parent amines accounted for up to 12% of the dose of MeIQx and up to 2% of the dose of PhIP. 8-CH(2)OH-IQx and IQx-8-COOH accounted for up to 76% of the dose of MeIQx, and the isomeric glucuronide conjugates of HONH-PhIP accounted for up to 33% of the dose of PhIP that were eliminated in urine within 10 h of meat consumption. P450 1A2 significantly contributes to the metabolism of both HAAs but with marked differences in substrate specificity. P450 1A2 primarily catalyzes the detoxification of MeIQx by oxidation of the 8-methyl group, whereas it catalyzes the bioactivation of PhIP by oxidation of the exocyclic amine group.


Asunto(s)
Carcinógenos/metabolismo , Imidazoles/metabolismo , Carne/análisis , Metaboloma , Quinoxalinas/metabolismo , Carcinógenos/análisis , Carcinógenos/toxicidad , Cromatografía Líquida de Alta Presión , Citocromo P-450 CYP1A2/metabolismo , Humanos , Imidazoles/orina , Quinoxalinas/orina , Extracción en Fase Sólida , Espectrometría de Masa por Ionización de Electrospray
17.
J Enzyme Inhib Med Chem ; 25(5): 679-84, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20100069

RESUMEN

The results of quantitative structure-activity relationship (QSAR) studies on inhibitors and substrates of cytochrome P450 2B (CYP2B) subfamily enzymes are reported. It was found that lipophilicity (in the form of log P) is the most important property for explaining the variations in inhibitory activity, and there are similarities between QSARs for both substrates and inhibitors for CYP2B6 (human), and also between those of other CYP2B enzymes, such as CYP2B1 (rat) and CYP2B4 (rabbit). Both linear and quadratic lipophilicity relationships are evidenced in human and other mammalian species, and the particular type of expression found is probably due to the nature of the compounds under investigation, as it is usually the homologous series which tend to show quadratic relationships in log P. The findings from QSAR studies can be rationalized by molecular modelling of the active site interactions with both P450 crystal structures and homology models of CYP2B subfamily enzymes.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Relación Estructura-Actividad Cuantitativa , Xenobióticos/química , Xenobióticos/metabolismo , Algoritmos , Animales , Hidrocarburo de Aril Hidroxilasas/química , Hidrocarburo de Aril Hidroxilasas/metabolismo , Dominio Catalítico , Citocromo P-450 CYP2B1/química , Citocromo P-450 CYP2B1/metabolismo , Citocromo P-450 CYP2B6 , Sistema Enzimático del Citocromo P-450/química , Familia 2 del Citocromo P450 , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Conformación Molecular , Unión Proteica , Conejos , Ratas
18.
Toxicol Sci ; 177(2): 362-376, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32735318

RESUMEN

Using a chimeric mouse humanized liver model, we provided evidence that human hepatocytes are refractory to the mitogenic effects of rodent constitutive androstane receptor (CAR) activators. To evaluate the functional reliability of this model, the present study examined mitogenic responses to phenobarbital (PB) in chimeric mice transplanted with rat hepatocytes, because rats are responsive to CAR activators. Treatment with 1000 ppm PB for 7 days significantly increased replicative DNA synthesis (RDS) in rat hepatocytes of the chimeric mice, demonstrating that the transplanted hepatocyte model is functionally reliable for cell proliferation analysis. Treatment of humanized CAR and pregnane X receptor (PXR) mice (hCAR/hPXR mice) with 1000 ppm PB for 7 days significantly increased hepatocyte RDS together with increases in several mitogenic genes. Global gene expression analysis was performed with liver samples from this and from previous studies focusing on PB-induced Wnt/ß-catenin signaling and showed that altered genes in hCAR/hPXR mice clustered most closely with liver tumor samples from a diethylnitrosamine/PB initiation/promotion study than with wild-type mice. However, different gene clusters were observed for chimeric mice with human hepatocytes for Wnt/ß-catenin signaling when compared with those of hCAR/hPXR mice, wild-type mice, and liver tumor samples. The results of this study demonstrate clear differences in the effects of PB on hepatocyte RDS and global gene expression between human hepatocytes of chimeric mice and hCAR/hPXR mice, suggesting that the chimeric mouse model is relevant to humans for studies on the hepatic effects of rodent CAR activators whereas the hCAR/hPXR mouse is not.


Asunto(s)
Fenobarbital , Receptores de Esteroides , Animales , Receptor de Androstano Constitutivo , Hepatocitos , Humanos , Hígado , Ratones , Fenobarbital/toxicidad , Receptor X de Pregnano , Ratas , Receptores Citoplasmáticos y Nucleares , Reproducibilidad de los Resultados
19.
Toxicology ; 439: 152465, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32320717

RESUMEN

In a 79 week bioassay the pesticide synergist piperonyl butoxide (PBO) was shown to significantly increase the incidence of hepatocellular adenoma (but not hepatocellular carcinoma) in male CD-1 mice at dietary levels of 100 and 300 mg/kg/day PBO and in female mice at a dietary level of 300 mg/kg/day. As PBO is not a genotoxic agent, a series of investigative studies were undertaken to elucidate the mode of action (MOA) for PBO-induced mouse liver tumour formation. Male CD-1 mice were fed diets to provide intakes of 0 (control), 30, 100 and 300 mg/kg/day PBO and for purposes of comparison 500 ppm sodium phenobarbital (NaPB), a known constitutive androstane receptor (CAR) activator, for 7 and 14 days. Treatment with 100 and 300 mg/kg/day PBO and 500 ppm NaPB increased relative liver weight which was associated with hepatocyte hypertrophy, with hepatocyte replicative DNA synthesis (RDS) being increased after 7 days treatment. The treatment of CD-1 mice with 30-300 mg/kg/day PBO for 14 days resulted in significant dose-dependent increases in hepatic microsomal cytochrome P450 (CYP) content and 7-pentoxyresorufin O-depentylase (PROD) activity and in hepatic Cyp2b10 mRNA levels. In contrast, PBO produced a biphasic effect on markers of activation of the peroxisome proliferator-activated receptor alpha (PPARα), with small increases in microsomal lauric acid 12-hydroxylase activity and hepatic Cyp4a10 mRNA levels being observed in mice given 100 mg/kg/day with PBO, with either no increase or a significant inhibition being observed in mice given 300 mg/kg/day PBO. The hepatic effects of PBO in male CD-1 mice were generally similar to those produced by NaPB and were reversible after the cessation of treatment for 28 days. Studies were also performed in male C57BL/6J (wild type) mice and in hepatic CAR and pregnane X receptor (PXR) knockout mice (CAR KO/PXR KO mice), where in the CAR KO/PXR KO mice PBO had little effect on markers of CAR activation, but produced some increases in markers of PPARα activation. The treatment of male CD-1 mouse hepatocytes for 4 days with 5-50 µM PBO, 10-1000 µM NaPB and 25 ng/mL epidermal growth factor (EGF) resulted in significant increases in hepatocyte RDS. While treatment of hepatocytes from one male and one female human donor with 5-500 µM PBO and 10-1000 µM NaPB for 4 days had no effect on hepatocyte RDS, treatment with EGF resulted in significant increases in RDS in both human hepatocyte preparations. In summary, PBO is predominantly a hepatic CAR activator at carcinogenic dose levels in CD-1 mice, with activation of hepatic CAR resulting in a suppression of the effect of PBO on hepatic PPARα. A robust MOA for PBO-induced mouse liver tumour formation has been established, this MOA being similar to that previously identified for NaPB and some other rodent liver CAR activators. Based on the lack of effect of PBO on RDS in human hepatocytes, it is considered that the MOA for PBO-induced mouse liver tumour formation is qualitatively not plausible for humans.


Asunto(s)
Neoplasias Hepáticas Experimentales/inducido químicamente , Sinergistas de Plaguicidas/toxicidad , Butóxido de Piperonilo/toxicidad , Animales , Tamaño de la Célula , Replicación del ADN/efectos de los fármacos , Dieta , Regulación de la Expresión Génica/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Humanos , Hígado/efectos de los fármacos , Hígado/enzimología , Pruebas de Función Hepática , Neoplasias Hepáticas Experimentales/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenobarbital/toxicidad , Receptores Sensibles al Calcio/genética
20.
Toxicol Sci ; 175(1): 50-63, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32040184

RESUMEN

In 2-year studies, the nongenotoxic pyrethroid insecticide permethrin produced hepatocellular tumors in CD-1 mice but not in Wistar rats. Recently, we demonstrated that the mode of action (MOA) for mouse liver tumor formation by permethrin involves activation of the peroxisome proliferator-activated receptor alpha (PPARα), resulting in a mitogenic effect. In the present study, the effects of permethrin and 2 major permethrin metabolites, namely 3-phenoxybenzoic acid and trans-dichlorochrysanthemic acid, on cytochrome P450 mRNA levels and cell proliferation (determined as replicative DNA synthesis) were evaluated in cultured CD-1 mouse, Wistar rat, and human hepatocytes. Permethrin and 3-phenoxybenzoic acid induced CYP4A mRNA levels in both mouse and human hepatocytes, with trans-dichlorochrysanthemic acid also increasing CYP4A mRNA levels in mouse hepatocytes. 3-Phenoxybenzoic acid induced CYP4A mRNA levels in rat hepatocytes, with trans-dichlorochrysanthemic acid increasing both CYP4A mRNA levels and replicative DNA synthesis. Permethrin, 3-phenoxybenzoic acid, and trans-dichlorochrysanthemic acid stimulated replicative DNA synthesis in mouse hepatocytes but not in human hepatocytes, demonstrating that human hepatocytes are refractory to the mitogenic effects of permethrin and these 2 metabolites. Thus, although some of the key (eg, PPARα activation) and associative (eg, CYP4A induction) events in the established MOA for permethrin-induced mouse liver tumor formation could occur in human hepatocytes at high doses of permethrin, 3-phenoxybenzoic acid, and/or trans-dichlorochrysanthemic acid, increased cell proliferation (an essential step in carcinogenesis by nongenotoxic PPARα activators) was not observed. These results provide additional evidence that the established MOA for permethrin-induced mouse liver tumor formation is not plausible for humans.


Asunto(s)
Transformación Celular Neoplásica/inducido químicamente , Hepatocitos/efectos de los fármacos , Insecticidas/toxicidad , Neoplasias Hepáticas/inducido químicamente , Permetrina/toxicidad , Animales , Benzoatos/toxicidad , Proliferación Celular/efectos de los fármacos , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Células Cultivadas , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Femenino , Regulación Enzimológica de la Expresión Génica , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Ratones , PPAR alfa/agonistas , PPAR alfa/metabolismo , Ratas Wistar , Medición de Riesgo , Factores Sexuales , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA