Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Exp Bot ; 75(16): 4772-4783, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-38712747

RESUMEN

Understanding phenology, its genetics and agronomic consequences, is critical for crop adaptation. Here we aim to (i) characterize lentil response to photoperiod with a focus on five loci: the lentil ELF3 orthologue Sn, two loci linked to clusters of lentil FT orthologues, and two loci without candidates in chromosomes 2 and 5 (Experiment 1: 36 lines, short and long days in a phytotron), and (ii) establish the phenology-yield relationship (Experiment 2: 25 lines, 11 field environments). A vintage perspective, where we quantify time trends in phenotype over three decades of breeding, links both experiments. Yield increased linearly from older to newer varieties at 29 kg ha-1 year-1 or 1.5% year-1, correlated negatively with flowering time in both winter- and summer-rainfall regimes, and decoupled from biomass in favourable environments. Time to flowering shortened from older to newer varieties at -0.56% year-1 in the field, and -0.42% year-1 (short days) and -0.99% year-1 (long days) in the phytotron. Early-flowering lines of diverse origin carried multiple early alleles for the five loci, indicating that at least some of these loci affect phenology additively. Current germplasm primarily features the early-flowering haplotype for an FTb cluster region, hence the potential to increase phenological diversity with yield implications.


Asunto(s)
Lens (Planta) , Semillas , Lens (Planta)/genética , Lens (Planta)/crecimiento & desarrollo , Lens (Planta)/fisiología , Semillas/crecimiento & desarrollo , Semillas/genética , Fotoperiodo , Flores/crecimiento & desarrollo , Flores/genética , Estaciones del Año , Fenotipo
2.
J Exp Bot ; 73(14): 4981-4995, 2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-35526198

RESUMEN

Water deficit often hastens flowering of pulses partially because droughted plants are hotter. Separating temperature-independent and temperature-dependent effects of drought is important to understand, model, and manipulate phenology. We define a new trait, drought effect on phenology (DEP), as the difference in flowering time between irrigated and rainfed crops, and use FST genome scanning to probe for genomic regions under selection for this trait in chickpea (Cicer arietinum). Owing to the negligible variation in daylength in our dataset, variation in phenology with sowing date was attributed to temperature and water; hence, genomic regions overlapping for early- and late-sown crops would associate with temperature-independent effects and non-overlapping genomic regions would associate with temperature-dependent effects. Thermal-time to flowering was shortened with increasing water stress, as quantified with carbon isotope composition. Genomic regions on chromosomes 4-8 were under selection for DEP. An overlapping region for early and late sowing on chromosome 8 revealed a temperature-independent effect with four candidate genes: BAM1, BAM2, HSL2, and ANT. The non-overlapping regions included six candidate genes: EMF1, EMF2, BRC1/TCP18, BZR1, NPGR1, and ERF1. Modelling showed that DEP reduces the likelihood of drought and heat stress at the expense of increased likelihood of cold stress. Accounting for DEP would improve genetic and phenotypic models of phenology.


Asunto(s)
Cicer , Cicer/genética , Productos Agrícolas/genética , Sequías , Fenotipo , Temperatura
3.
J Exp Bot ; 67(14): 4339-51, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27296246

RESUMEN

We measured yield components, nitrogen fixation, soil nitrogen uptake and carbon isotope composition (δ(13)C) in a collection of chickpea genotypes grown in environments where water availability was the main source of yield variation. We aimed to quantify the phenotypic plasticity of these traits using variance ratios, and to explore their genetic basis using FST genome scan. Fifty-five genes in three genomic regions were found to be under selection for plasticity of yield; 54 genes in four genomic regions for the plasticity of seeds per m(2); 48 genes in four genomic regions for the plasticity of δ(13)C; 54 genes in two genomic regions for plasticity of flowering time; 48 genes in five genomic regions for plasticity of nitrogen fixation and 49 genes in three genomic regions for plasticity of nitrogen uptake from soil. Plasticity of yield was related to plasticity of nitrogen uptake from soil, and unrelated to plasticity of nitrogen fixation, highlighting the need for closer attention to nitrogen uptake in legumes. Whereas the theoretical link between δ(13)C and transpiration efficiency is strong, the actual link with yield is erratic due to trade-offs and scaling issues. Genes associated with plasticity of δ(13)C were identified that may help to untangle the δ(13)C-yield relationship. Combining a plasticity perspective to deal with complex G×E interactions with FST genome scan may help understand and improve both crop adaptation to stress and yield potential.


Asunto(s)
Cicer/metabolismo , Fijación del Nitrógeno , Adaptación Fisiológica , Radioisótopos de Carbono/metabolismo , Cicer/genética , Cicer/crecimiento & desarrollo , Producción de Cultivos , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Fijación del Nitrógeno/genética , Fenotipo , Agua
4.
Front Plant Sci ; 12: 674327, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149775

RESUMEN

The contemporary lentil (Lens culinaris ssp. culinaris) industry in Australia started in the late 1980s. Yield in farmers' fields averages 1.2 t ha-1 nationally and has not increased over three decades. Lack of yield progress can be related to a number of non-mutually exclusive reasons: expansion of lentil to low-yielding environments, lack of genetic gain in yield, lack of progress in agronomic practices, and lack of adoption of superior technologies. The aims of this study were to (i) quantify the genetic gain in lentil yield since 1988, (ii) explore the variation in the expression of genetic gain with the environment, and (iii) identify shifts in crop phenotype associated with selection for yield and agronomic adaptation. We grew a historic collection of 19 varieties released between 1988 and 2019 in eight environments resulting from the factorial combination of two sowing dates, two water regimes, and two seasons. Across environments, yield varied 11-fold from 0.2 to 2.2 t ha-1. The rate of genetic gain averaged 20 kg ha-1 year-1 or 1.23% year-1 across environments and was higher in low-yield environments. The yield increase was associated with substantial shifts in phenology. Newer varieties had a shorter time to flowering and pod emergence, and the rate of change in these traits was more pronounced in slow-developing environments (e.g., earlier sowing). Thermal time from sowing to end of flowering and maturity were shorter in newer varieties, and thermal time from pod emergence to maturity was longer in newer varieties; the rate of change in these traits was unrelated to developmental drivers and correlated with environmental mean yield. Genetic gain in yield was associated with increased grain number and increased harvest index. Despite their shorter time to maturity, newer varieties had similar or higher biomass than their older counterparts because crop growth rate during the critical period increased with the year of release. Genotype-dependent yield increased over three decades in low-yield environments, whereas actual farm yield has been stagnant; this suggests an increasing yield gap requiring agronomic solutions. Genetic improvement in high-yield environments requires improved coupling of growth and reproduction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA