Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Nucleic Acids Res ; 52(12): 6994-7011, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38828775

RESUMEN

The clinical success of PARP1/2 inhibitors (PARPi) prompts the expansion of their applicability beyond homologous recombination deficiency. Here, we demonstrate that the loss of the accessory subunits of DNA polymerase epsilon, POLE3 and POLE4, sensitizes cells to PARPi. We show that the sensitivity of POLE4 knockouts is not due to compromised response to DNA damage or homologous recombination deficiency. Instead, POLE4 loss affects replication speed leading to the accumulation of single-stranded DNA gaps behind replication forks upon PARPi treatment, due to impaired post-replicative repair. POLE4 knockouts elicit elevated replication stress signaling involving ATR and DNA-PK. We find POLE4 to act parallel to BRCA1 in inducing sensitivity to PARPi and counteracts acquired resistance associated with restoration of homologous recombination. Altogether, our findings establish POLE4 as a promising target to improve PARPi driven therapies and hamper acquired PARPi resistance.


Asunto(s)
Proteína BRCA1 , ADN Polimerasa II , Replicación del ADN , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Humanos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , ADN Polimerasa II/metabolismo , ADN Polimerasa II/genética , Replicación del ADN/efectos de los fármacos , Daño del ADN , Línea Celular Tumoral , Recombinación Homóloga/genética , Recombinación Homóloga/efectos de los fármacos , Resistencia a Antineoplásicos/genética
2.
Nucleic Acids Res ; 45(17): 10056-10067, 2017 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-28973445

RESUMEN

ADP-ribosyltransferases promote repair of DNA single strand breaks and disruption of this pathway by Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) is toxic to cells with defects in homologous recombination (HR). Here, we show that this relationship is conserved in the simple eukaryote Dictyostelium and exploit this organism to define mechanisms that drive resistance of the HR-deficient cells to PARPi. Dictyostelium cells disrupted in exonuclease I, a critical factor for HR, are sensitive to PARPi. Deletion of exo1 prevents the accumulation of Rad51 in chromatin induced by PARPi, resulting in DNA damage being channelled through repair by non-homologous end-joining (NHEJ). Inactivation of NHEJ supresses the sensitivity of exo1- cells to PARPi, indicating this pathway drives synthetic lethality and that in its absence alternative repair mechanisms promote cell survival. This resistance is independent of alternate-NHEJ and is instead achieved by re-activation of HR. Moreover, inhibitors of Mre11 restore sensitivity of dnapkcs-exo1- cells to PARPi, indicating redundancy between nucleases that initiate HR can drive PARPi resistance. These data inform on mechanism of PARPi resistance in HR-deficient cells and present Dictyostelium as a convenient genetic model to characterize these pathways.


Asunto(s)
ADP Ribosa Transferasas/fisiología , Dictyostelium/enzimología , Resistencia a Medicamentos/fisiología , Recombinación Homóloga/fisiología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/fisiología , Proteínas Protozoarias/fisiología , Benzamidas/farmacología , Células Clonales , Quinasa 8 Dependiente de Ciclina/deficiencia , Quinasa 8 Dependiente de Ciclina/genética , Quinasa 8 Dependiente de Ciclina/fisiología , Daño del ADN , Dictyostelium/efectos de los fármacos , Dictyostelium/genética , Exodesoxirribonucleasas/deficiencia , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/fisiología , Eliminación de Gen , Indoles/farmacología , Ftalazinas/farmacología , Piperazinas/farmacología , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética , Quinazolinas/farmacología , Recombinasa Rad51/deficiencia , Recombinasa Rad51/fisiología , Proteínas Recombinantes/metabolismo
3.
J Cell Sci ; 129(20): 3845-3858, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27587838

RESUMEN

ADP-ribosylation by ADP-ribosyltransferases (ARTs) has a well-established role in DNA strand break repair by promoting enrichment of repair factors at damage sites through ADP-ribose interaction domains. Here, we exploit the simple eukaryote Dictyostelium to uncover a role for ADP-ribosylation in regulating DNA interstrand crosslink repair and redundancy of this pathway with non-homologous end-joining (NHEJ). In silico searches were used to identify a protein that contains a permutated macrodomain (which we call aprataxin/APLF-and-PNKP-like protein; APL). Structural analysis reveals that this permutated macrodomain retains features associated with ADP-ribose interactions and that APL is capable of binding poly(ADP-ribose) through this macrodomain. APL is enriched in chromatin in response to cisplatin treatment, an agent that induces DNA interstrand crosslinks (ICLs). This is dependent on the macrodomain of APL and the ART Adprt2, indicating a role for ADP-ribosylation in the cellular response to cisplatin. Although adprt2- cells are sensitive to cisplatin, ADP-ribosylation is evident in these cells owing to redundant signalling by the double-strand break (DSB)-responsive ART Adprt1a, promoting NHEJ-mediated repair. These data implicate ADP-ribosylation in DNA ICL repair and identify that NHEJ can function to resolve this form of DNA damage in the absence of Adprt2.


Asunto(s)
Reactivos de Enlaces Cruzados/metabolismo , Reparación del ADN , ADN/metabolismo , Dictyostelium/metabolismo , Poli Adenosina Difosfato Ribosa/metabolismo , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Cromatina/metabolismo , Cisplatino/farmacología , Daño del ADN , Reparación del ADN por Unión de Extremidades/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Dictyostelium/efectos de los fármacos , Modelos Moleculares , Unión Proteica/efectos de los fármacos , Dominios Proteicos , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo
4.
J Cell Sci ; 126(Pt 15): 3452-61, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23750002

RESUMEN

ADP-ribosylation of proteins at DNA lesions by ADP-ribosyltransferases (ARTs) is an early response to DNA damage. The best defined role of ADP-ribosylation in the DNA damage response is in repair of single strand breaks (SSBs). Recently, we initiated a study of how ADP-ribosylation regulates DNA repair in Dictyostelium and found that two ARTs (Adprt1b and Adprt2) are required for tolerance of cells to SSBs, and a third ART (Adprt1a) promotes nonhomologous end-joining (NHEJ). Here we report that disruption of adprt2 results in accumulation of DNA damage throughout the cell cycle following exposure to agents that induce base damage and DNA SSBs. Although ADP-ribosylation is evident in adprt2(-) cells exposed to methylmethanesulfonate (MMS), disruption of adprt1a and adprt2 in combination abolishes this response and further sensitises cells to this agent, indicating that in the absence of Adprt2, Adprt1a signals MMS-induced DNA lesions to promote resistance of cells to DNA damage. As a consequence of defective signalling of SSBs by Adprt2, Adprt1a is required to assemble NHEJ factors in chromatin, and disruption of the NHEJ pathway in combination with adprt2 increases sensitivity of cells to MMS. Taken together, these data indicate overlapping functions of different ARTs in signalling DNA damage, and illustrate a critical requirement for NHEJ in maintaining cell viability in the absence of an effective SSB response.


Asunto(s)
ADP Ribosa Transferasas/metabolismo , Roturas del ADN de Cadena Simple , Reparación del ADN por Unión de Extremidades , Poli(ADP-Ribosa) Polimerasas/deficiencia , ADP Ribosa Transferasas/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Dictyostelium/genética , Dictyostelium/metabolismo , Dictyostelium/fisiología , Enterobacter aerogenes/genética , Enterobacter aerogenes/metabolismo , Enterobacter aerogenes/fisiología , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Transducción de Señal
5.
J Cell Sci ; 124(Pt 10): 1655-63, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21536833

RESUMEN

DNA double-strand breaks (DSBs) can be repaired by homologous recombination (HR) or non-homologous end joining (NHEJ). The mechanisms that govern whether a DSB is repaired by NHEJ or HR remain unclear. Here, we characterise DSB repair in the amoeba Dictyostelium. HR is the principal pathway responsible for resistance to DSBs during vegetative cell growth, a stage of the life cycle when cells are predominantly in G2. However, we illustrate that restriction-enzyme-mediated integration of DNA into the Dictyostelium genome is possible during this stage of the life cycle and that this is mediated by an active NHEJ pathway. We illustrate that Dclre1, a protein with similarity to the vertebrate NHEJ factor Artemis, is required for NHEJ independently of DNA termini complexity. Although vegetative dclre1(-) cells are not radiosensitive, they exhibit delayed DSB repair, further supporting a role for NHEJ during this stage of the life cycle. By contrast, cells lacking the Ku80 component of the Ku heterodimer that binds DNA ends to facilitate NHEJ exhibit no such defect and deletion of ku80 suppresses the DSB repair defect of dclre1(-) cells through increasing HR efficiency. These data illustrate a functional NHEJ pathway in vegetative Dictyostelium and the importance of Ku in regulating DSB repair choice during this phase of the life cycle.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Dictyostelium/genética , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , ADN Protozoario/genética , ADN Protozoario/metabolismo , Proteína Quinasa Activada por ADN/metabolismo , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dictyostelium/metabolismo , Autoantígeno Ku , Recombinación Genética , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Nat Commun ; 14(1): 4310, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37463936

RESUMEN

Although Poly(ADP-ribose)-polymerases (PARPs) are key regulators of genome stability, how site-specific ADP-ribosylation regulates DNA repair is unclear. Here, we describe a novel role for PARP1 and PARP2 in regulating Rad52-dependent replication fork repair to maintain cell viability when homologous recombination is dysfunctional, suppress replication-associated DNA damage, and maintain genome stability. Mechanistically, Mre11 and ATM are required for induction of PARP activity in response to replication stress that in turn promotes break-induced replication (BIR) through assembly of Rad52 at stalled/damaged replication forks. Further, by mapping ADP-ribosylation sites induced upon replication stress, we identify that PolD3 is a target for PARP1/PARP2 and that its site-specific ADP-ribosylation is required for BIR activity, replication fork recovery and genome stability. Overall, these data identify a critical role for Mre11-dependent PARP activation and site-specific ADP-ribosylation in regulating BIR to maintain genome integrity during DNA synthesis.


Asunto(s)
Inhibidores de Poli(ADP-Ribosa) Polimerasas , Serina , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , ADP-Ribosilación , Replicación del ADN , Daño del ADN , Reparación del ADN , Inestabilidad Genómica
7.
Nat Commun ; 14(1): 5003, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37591890

RESUMEN

While the toxicity of PARP inhibitors to cells with defects in homologous recombination (HR) is well established, other synthetic lethal interactions with PARP1/PARP2 disruption are poorly defined. To inform on these mechanisms we conducted a genome-wide screen for genes that are synthetic lethal with PARP1/2 gene disruption and identified C16orf72/HAPSTR1/TAPR1 as a novel modulator of replication-associated R-loops. C16orf72 is critical to facilitate replication fork restart, suppress DNA damage and maintain genome stability in response to replication stress. Importantly, C16orf72 and PARP1/2 function in parallel pathways to suppress DNA:RNA hybrids that accumulate at stalled replication forks. Mechanistically, this is achieved through an interaction of C16orf72 with BRCA1 and the RNA/DNA helicase Senataxin to facilitate their recruitment to RNA:DNA hybrids and confer resistance to PARP inhibitors. Together, this identifies a C16orf72/Senataxin/BRCA1-dependent pathway to suppress replication-associated R-loop accumulation, maintain genome stability and confer resistance to PARP inhibitors.


Asunto(s)
Proteína BRCA1 , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Estructuras R-Loop , Daño del ADN , ADN Helicasas/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Estructuras R-Loop/genética , ARN , Proteína BRCA1/genética , Péptidos y Proteínas de Señalización Intracelular/genética
8.
Nat Commun ; 13(1): 185, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-35027540

RESUMEN

Although serine ADP-ribosylation (Ser-ADPr) by Poly(ADP-ribose)-polymerases is a cornerstone of the DNA damage response, how this regulates DNA repair and genome stability is unknown. Here, we exploit the ability to manipulate histone genes in Dictyostelium to identify that ADPr of the histone variant H3b at S10 and S28 maintains genome stability by integrating double strand break (DSB) repair with mitotic entry. Given the critical requirement for mitotic H3S10/28 phosphorylation, we develop separation of function mutations that maintain S10 phosphorylation whilst disrupting ADPr. Mechanistically, this reveals a requirement for H3bS10/28 ADPr in non-homologous end-joining by recruiting Ku to DSBs. Moreover, this also identifies H3bS10/S28 ADPr is critical to prevent premature mitotic entry with unresolved DNA damage, thus maintaining genome stability. Together, these data demonstrate how serine ADPr of histones coordinates DNA repair with cell cycle progression to maintain genome stability.


Asunto(s)
Ciclo Celular/genética , Dictyostelium/genética , Histonas/genética , Poli(ADP-Ribosa) Polimerasas/genética , Procesamiento Proteico-Postraduccional , Serina/metabolismo , ADP-Ribosilación , Roturas del ADN de Doble Cadena , Daño del ADN , Reparación del ADN por Unión de Extremidades , ADN Protozoario , Dictyostelium/metabolismo , Inestabilidad Genómica , Histonas/metabolismo , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Fosforilación , Poli(ADP-Ribosa) Polimerasas/metabolismo
9.
Front Cell Dev Biol ; 9: 752175, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34692705

RESUMEN

Preserving genome integrity through repair of DNA damage is critical for human health and defects in these pathways lead to a variety of pathologies, most notably cancer. The social amoeba Dictyostelium discoideum is remarkably resistant to DNA damaging agents and genome analysis reveals it contains orthologs of several DNA repair pathway components otherwise limited to vertebrates. These include the Fanconi Anemia DNA inter-strand crosslink and DNA strand break repair pathways. Loss of function of these not only results in malignancy, but also neurodegeneration, immune-deficiencies and congenital abnormalities. Additionally, D. discoideum displays remarkable conservations of DNA repair factors that are targets in cancer and other therapies, including poly(ADP-ribose) polymerases that are targeted to treat breast and ovarian cancers. This, taken together with the genetic tractability of D. discoideum, make it an attractive model to assess the mechanistic basis of DNA repair to provide novel insights into how these pathways can be targeted to treat a variety of pathologies. Here we describe progress in understanding the mechanisms of DNA repair in D. discoideum, and how these impact on genome stability with implications for understanding development of malignancy.

10.
Curr Biol ; 15(20): 1880-5, 2005 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-16243037

RESUMEN

DNA double-strand breaks (DSBs) can be repaired by either homologous recombination (HR) or nonhomologous end-joining (NHEJ). In vertebrates, the first step in NHEJ is recruitment of the DNA-dependent protein kinase (DNA-PK) to DNA termini. DNA-PK consists of a catalytic subunit (DNA-PKcs) that is recruited to DNA ends by the Ku70/Ku80 heterodimer. Although Ku has been identified in a wide variety of organisms, to date DNA-PKcs has only been identified experimentally in vertebrates. Here, we report the identification of DNA-PK in the nonvertebrate Dictyostelium. Dictyostelium Ku80 contains a conserved domain previously implicated in recruiting DNA-PKcs to DNA and consistent with this observation, we have identified DNA-PKcs in the Dictyostelium genome. Disruption of the gene encoding Dictyostelium DNA-PKcs results in sensitivity to DNA DSBs and defective H2AX phosphorylation in response to this form of DNA damage. However, these phenotypes are only apparent when DNA damage is administered in G(1) phase of the cell cycle. These data illustrate a cell cycle-dependent requirement for Dictyostelium DNA-PK in signaling and combating DNA DSBs and represent the first experimental verification of DNA-PKcs in a nonvertebrate organism.


Asunto(s)
Dominio Catalítico/fisiología , Daño del ADN , Proteína Quinasa Activada por ADN/fisiología , Dictyostelium/fisiología , Filogenia , Transducción de Señal/fisiología , Secuencia de Aminoácidos , Animales , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Bleomicina , Western Blotting , Dominio Catalítico/genética , Análisis por Conglomerados , Biología Computacional , Proteína Quinasa Activada por ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dictyostelium/genética , Citometría de Flujo , Histonas/metabolismo , Autoantígeno Ku , Datos de Secuencia Molecular , Fosforilación , Transducción de Señal/genética
11.
Methods Mol Biol ; 1813: 125-148, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30097865

RESUMEN

The amoeba Dictyostelium discoideum is a single-cell organism that can undergo a simple developmental program, making it an excellent model to study the molecular mechanisms of cell motility, signal transduction, and cell-type differentiation. A variety of human genes that are absent or show limited conservation in other invertebrate models have been identified in this organism. This includes ADP-ribosyltransferases, also known as poly-ADP-ribose polymerases (PARPs), a family of proteins that catalyze the addition of single or poly-ADP-ribose moieties onto target proteins. The genetic tractability of Dictyostelium and its relatively simple genome structure makes it possible to disrupt PARP gene combinations, in addition to specific ADP-ribosylation sites at endogenous loci. Together, this makes Dictyostelium an attractive model to assess how ADP-ribosylation regulates a variety of cellular processes including DNA repair, transcription, and cell-type specification. Here we describe a range of techniques to study ADP-ribosylation in Dictyostelium, including analysis of ADP-ribosylation events in vitro and in vivo, in addition to approaches to assess the functional roles of this modification in vivo.


Asunto(s)
ADP Ribosa Transferasas/genética , ADP-Ribosilación/genética , Dictyostelium/genética , Biología Molecular/métodos , Diferenciación Celular/genética , Movimiento Celular/genética , Reparación del ADN/genética , Dictyostelium/metabolismo , Humanos , Poli Adenosina Difosfato Ribosa/genética , Transducción de Señal
12.
Nat Commun ; 9(1): 746, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29467415

RESUMEN

PARP1 regulates the repair of DNA single-strand breaks generated directly, or during base excision repair (BER). However, the role of PARP2 in these and other repair mechanisms is unknown. Here, we report a requirement for PARP2 in stabilising replication forks that encounter BER intermediates through Fbh1-dependent regulation of Rad51. Whereas PARP2 is dispensable for tolerance of cells to SSBs or homologous recombination dysfunction, it is redundant with PARP1 in BER. Therefore, combined disruption of PARP1 and PARP2 leads to defective BER, resulting in elevated levels of replication-associated DNA damage owing to an inability to stabilise Rad51 at damaged replication forks and prevent uncontrolled DNA resection. Together, our results demonstrate how PARP1 and PARP2 regulate two independent, but intrinsically linked aspects of DNA base damage tolerance by promoting BER directly, and by stabilising replication forks that encounter BER intermediates.


Asunto(s)
ADN Helicasas/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Recombinasa Rad51/metabolismo , Línea Celular , Daño del ADN , ADN Helicasas/antagonistas & inhibidores , ADN Helicasas/genética , Replicación del ADN , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Recombinación Homóloga , Humanos , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasas/genética , Estabilidad Proteica , ARN Interferente Pequeño/genética , Fase S
14.
Mol Cell Biol ; 24(3): 1279-91, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14729972

RESUMEN

Bloom's syndrome (BS) is a human genetic disorder associated with cancer predisposition. The BS gene product, BLM, is a member of the RecQ helicase family, which is required for the maintenance of genome stability in all organisms. In budding and fission yeasts, loss of RecQ helicase function confers sensitivity to inhibitors of DNA replication, such as hydroxyurea (HU), by failure to execute normal cell cycle progression following recovery from such an S-phase arrest. We have examined the role of the human BLM protein in recovery from S-phase arrest mediated by HU and have probed whether the stress-activated ATR kinase, which functions in checkpoint signaling during S-phase arrest, plays a role in the regulation of BLM function. We show that, consistent with a role for BLM in protection of human cells against the toxicity associated with arrest of DNA replication, BS cells are hypersensitive to HU. BLM physically associates with ATR (ataxia telangiectasia and rad3(+) related) protein and is phosphorylated on two residues in the N-terminal domain, Thr-99 and Thr-122, by this kinase. Moreover, BS cells ectopically expressing a BLM protein containing phosphorylation-resistant T99A/T122A substitutions fail to adequately recover from an HU-induced replication blockade, and the cells subsequently arrest at a caffeine-sensitive G(2)/M checkpoint. These abnormalities are not associated with a failure of the BLM-T99A/T122A protein to localize to replication foci or to colocalize either with ATR itself or with other proteins that are required for response to DNA damage, such as phosphorylated histone H2AX and RAD51. Our data indicate that RecQ helicases play a conserved role in recovery from perturbations in DNA replication and are consistent with a model in which RecQ helicases act to restore productive DNA replication following S-phase arrest and hence prevent subsequent genomic instability.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular , ADN Helicasas/metabolismo , Fosfotransferasas/metabolismo , Fase S/fisiología , Adenosina Trifosfatasas/genética , Antineoplásicos/farmacología , Proteínas de la Ataxia Telangiectasia Mutada , Síndrome de Bloom/enzimología , ADN Helicasas/genética , Fibroblastos/efectos de los fármacos , Predisposición Genética a la Enfermedad , Humanos , Hidroxiurea/farmacología , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , RecQ Helicasas , Treonina/metabolismo
15.
Sci Rep ; 7: 43750, 2017 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-28252050

RESUMEN

ADP-ribosyltransferases (ARTs) modify proteins with single units or polymers of ADP-ribose to regulate DNA repair. However, the substrates for these enzymes are ill-defined. For example, although histones are modified by ARTs, the sites on these proteins ADP-ribosylated following DNA damage and the ARTs that catalyse these events are unknown. This, in part, is due to the lack of a eukaryotic model that contains ARTs, in addition to histone genes that can be manipulated to assess ADP-ribosylation events in vivo. Here we exploit the model Dictyostelium to identify site-specific histone ADP-ribosylation events in vivo and define the ARTs that mediate these modifications. Dictyostelium histones are modified in response to DNA double strand breaks (DSBs) in vivo by the ARTs Adprt1a and Adprt2. Adprt1a is a mono-ART that modifies H2BE18 in vitro, although disruption of this site allows ADP-ribosylation at H2BE19. Although redundancy between H2BE18 and H2BE19 ADP-ribosylation is also apparent following DSBs in vivo, by generating a strain with mutations at E18/E19 in the h2b locus we demonstrate these are the principal sites modified by Adprt1a/Adprt2. This identifies DNA damage induced histone mono-ADP-ribosylation sites by specific ARTs in vivo, providing a unique platform to assess how histone ADP-ribosylation regulates DNA repair.


Asunto(s)
ADP-Ribosilación , Roturas del ADN de Doble Cadena , Histonas/metabolismo , ADP Ribosa Transferasas/genética , ADP Ribosa Transferasas/metabolismo , Adenosina Difosfato Ribosa/metabolismo , Reparación del ADN , Dictyostelium/genética , Dictyostelium/metabolismo , Histonas/genética , Poli Adenosina Difosfato Ribosa/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo
16.
DNA Repair (Amst) ; 17: 121-31, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24548787

RESUMEN

DNA double strand breaks (DSBs) are a particularly cytotoxic variety of DNA lesion that can be repaired by homologous recombination (HR) or nonhomologous end-joining (NHEJ). HR utilises sequences homologous to the damage DNA template to facilitate repair. In contrast, NHEJ does not require homologous sequences for repair but instead functions by directly re-joining DNA ends. These pathways are critical to resolve DSBs generated intentionally during processes such as meiotic and site-specific recombination. However, they are also utilised to resolve potentially pathological DSBs generated by mutagens and errors during DNA replication. The importance of DSB repair is underscored by the findings that defects in these pathways results in chromosome instability that contributes to a variety of disease states including malignancy. The general principles of NHEJ are conserved in eukaryotes. As such, relatively simple model organisms have been instrumental in identifying components of these pathways and providing a mechanistic understanding of repair that has subsequently been applied to vertebrates. However, certain components of the NHEJ pathway are absent or show limited conservation in the most commonly used invertebrate models exploited to study DNA repair. Recently, however, it has become apparent that vertebrate DNA repair pathway components, including those involved in NHEJ, are unusually conserved in the amoeba Dictyostelium discoideum. Traditionally, this genetically tractable organism has been exploited to study the molecular basis of cell type specification, cell motility and chemotaxis. Here we discuss the use of this organism as an additional model to study DNA repair, with specific reference to NHEJ.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Dictyostelium/genética , Enzimas Reparadoras del ADN/metabolismo , ADN Protozoario , Humanos , Modelos Biológicos
17.
Methods Mol Biol ; 983: 295-310, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23494314

RESUMEN

DNA is constantly being damaged from endogenous and exogenous sources and efficient repair of different types of DNA lesions is essential for the survival of the organism. Dictyostelium is highly resistant to DNA damage and its genome sequence has revealed the presence of multiple repair pathways conserved with vertebrates but lost in other genetically tractable invertebrate models. As such, Dictyostelium is a powerful model organism to study selected human DNA repair pathways and may provide insights into the molecular basis of how cells become resistant to DNA damage. Here we describe a range of assays used to study DNA repair in Dictyostelium. Genes required for repair of DNA damage can be identified and analyzed by comparing the ability of control or mutant cells to survive exposure to genotoxic agents that induce different types of DNA lesion. We also describe assays that assess the presence of markers for DNA repair within chromatin either in the form of posttranslational modification of proteins at sites of damage or the recruitment of repair factors to DNA lesions. Finally, we also describe more direct assays to assess repair of DNA double-strand breaks by either homologous recombination or non-homologous end joining.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Dictyostelium/genética , Reparación del ADN por Recombinación , Tampones (Química) , Cromatina/genética , Cromatina/aislamiento & purificación , Técnicas de Cultivo , Roturas del ADN de Doble Cadena , Roturas del ADN de Cadena Simple , División del ADN , ADN Protozoario/genética , ADN Protozoario/aislamiento & purificación , Técnica del Anticuerpo Fluorescente Indirecta , Plásmidos/genética , Mapeo Restrictivo/métodos
18.
Cell Cycle ; 11(1): 48-56, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22186780

RESUMEN

ADP-ribosylation is the post translational modification of proteins catalysed by ADP-ribosyltransferases (ARTs). ADP-ribosylation has been implicated in a wide variety of cellular processes including cell growth and differentiation, apoptosis and transcriptional regulation. Perhaps the best characterised role, however, is in DNA repair and genome stability where ADP-ribosylation promotes resolution of DNA single strand breaks. Although ADP-ribosylation also occurs at DNA double strand breaks (DSBs), which ARTs catalyse this reaction and the molecular basis of how this modification regulates their repair remains a matter of debate. Here we review recent advances in our understanding of how ADP-ribosylation regulates DSB repair. Specifically, we highlight studies using the genetic model organism Dictyostelium, in addition to vertebrate cells that identify a third ART that accelerates DSB repair by non-homologous end-joining through promoting the interaction of repair factors with DNA lesions. The implications of these data with regards to how ADP-ribosylation regulates DNA repair and genome stability are discussed.


Asunto(s)
Adenosina Difosfato/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Poli(ADP-Ribosa) Polimerasas/metabolismo , Dictyostelium/metabolismo , Inestabilidad Genómica , Humanos , Poli(ADP-Ribosa) Polimerasa-1 , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Poli(ADP-Ribosa) Polimerasas/genética
19.
J Cell Biol ; 194(3): 367-75, 2011 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-21807880

RESUMEN

Poly adenosine diphosphate (ADP)-ribosylation (PARylation) by poly ADP-ribose (PAR) polymerases (PARPs) is an early response to DNA double-strand breaks (DSBs). In this paper, we exploit Dictyostelium discoideum to uncover a novel role for PARylation in regulating nonhomologous end joining (NHEJ). PARylation occurred at single-strand breaks, and two PARPs, Adprt1b and Adprt2, were required for resistance to this kind of DNA damage. In contrast, although Adprt1b was dispensable for PARylation at DSBs, Adprt1a and, to a lesser extent, Adprt2 were required for this event. Disruption of adprt2 had a subtle impact on the ability of cells to perform NHEJ. However, disruption of adprt1a decreased the ability of cells to perform end joining with a concomitant increase in homologous recombination. PAR-dependent regulation of NHEJ was achieved through promoting recruitment and/or retention of Ku at DSBs. Furthermore, a PAR interaction motif in Ku70 was required for this regulation and efficient NHEJ. These data illustrate that PARylation at DSBs promotes NHEJ through recruitment or retention of repair factors at sites of DNA damage.


Asunto(s)
ADP Ribosa Transferasas/metabolismo , Antígenos Nucleares/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Poli(ADP-Ribosa) Polimerasas , ADN/genética , Daño del ADN , Dictyostelium/genética , Técnica del Anticuerpo Fluorescente , Immunoblotting , Inmunoprecipitación , Autoantígeno Ku , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Poli(ADP-Ribosa) Polimerasas/fisiología , Alineación de Secuencia
20.
J Cell Sci ; 121(Pt 23): 3933-40, 2008 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19020305

RESUMEN

The cell cycle checkpoint kinase Chk1 is phosphorylated and activated by ATR in response to DNA damage and is crucial for initiating the DNA damage response. A number of factors act in concert with ATR to facilitate Chk1 phosphorylation, including Rad17-RFC, the Rad9-Rad1-Hus1 complex, TopBP1 and Claspin. Rad17 is required for loading of Rad9-Rad1-Hus1 (9-1-1) onto sites of DNA damage. Although phosphorylation of Rad17 by ATR is required for checkpoint function, how this affects 9-1-1 regulation remains unclear. We report that exposure of cells to DNA damage or replication stress results in Rad17-dependent immobilisation of Rad9 into nuclear foci. Furthermore, expression of mutant Rad17 that cannot be phosphorylated by ATR (Rad17(AA)), or downregulation of ATR, results in a decreased number of cells that display Rad9 foci. Photobleaching experiments reveal an increase in the dynamic behaviour of Rad9 within remaining foci in the absence of ATR or following expression of Rad17(AA). Together, these data suggest a model in which Rad17 and ATR collaborate in regulating Rad9 localisation and association at sites of DNA damage.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Daño del ADN/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Células 3T3 , Animales , Proteínas de Ciclo Celular/análisis , Proteínas de Ciclo Celular/genética , Células Cultivadas , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Replicación del ADN , Técnica del Anticuerpo Fluorescente , Células HeLa , Humanos , Ratones , Fosforilación , Proteínas Quinasas/metabolismo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA