Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Epilepsy Behav ; 13(2): 300-6, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18495541

RESUMEN

Brain-computer interfaces (BCIs) can be used for communication in writing without muscular activity or for learning to control seizures by voluntary regulation of brain signals such as the electroencephalogram (EEG). Three of five patients with epilepsy were able to spell their names with electrocorticogram (ECoG) signals derived from motor-related areas within only one or two training sessions. Imagery of finger or tongue movements was classified with support-vector classification of autoregressive coefficients derived from the ECoG signals. After training of the classifier, binary classification responses were used to select letters from a computer-generated menu. Offline analysis showed increased theta activity in the unsuccessful patients, whereas the successful patients exhibited dominant sensorimotor rhythms that they could control. The high spatial resolution and increased signal-to-noise ratio in ECoG signals, combined with short training periods, may offer an alternative for communication in complete paralysis, locked-in syndrome, and motor restoration.


Asunto(s)
Corteza Cerebral/fisiopatología , Equipos de Comunicación para Personas con Discapacidad , Electroencefalografía , Epilepsias Parciales/rehabilitación , Procesamiento de Señales Asistido por Computador , Interfaz Usuario-Computador , Escritura , Adulto , Biorretroalimentación Psicológica/fisiología , Dominancia Cerebral/fisiología , Epilepsias Parciales/fisiopatología , Femenino , Humanos , Imaginación/fisiología , Masculino , Persona de Mediana Edad , Actividad Motora/fisiología , Corteza Motora/fisiopatología , Programas Informáticos , Corteza Somatosensorial/fisiopatología , Ritmo Teta
2.
IEEE Trans Neural Syst Rehabil Eng ; 14(2): 183-6, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16792289

RESUMEN

We summarize results from a series of related studies that aim to develop a motor-imagery-based brain-computer interface using a single recording session of electroencephalogram (EEG) or electrocorticogram (ECoG) signals for each subject. We apply the same experimental and analytical methods to 11 nonparalysed subjects (eight EEG, three ECoG), and to five paralyzed subjects (four EEG, one ECoG) who had been unable to communicate for some time. While it was relatively easy to obtain classifiable signals quickly from most of the nonparalyzed subjects, it proved impossible to classify the signals obtained from the paralyzed patients by the same methods. This highlights the fact that though certain BCI paradigms may work well with healthy subjects, this does not necessarily indicate success with the target user group. We outline possible reasons for this failure to transfer.


Asunto(s)
Algoritmos , Inteligencia Artificial , Electroencefalografía/métodos , Potenciales Evocados , Parálisis/fisiopatología , Reconocimiento de Normas Patrones Automatizadas/métodos , Interfaz Usuario-Computador , Análisis por Conglomerados , Capacitación de Usuario de Computador/métodos , Femenino , Humanos , Imaginación , Masculino , Persona de Mediana Edad , Parálisis/rehabilitación
3.
IEEE Trans Biomed Eng ; 51(6): 1003-10, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15188871

RESUMEN

Designing a brain computer interface (BCI) system one can choose from a variety of features that may be useful for classifying brain activity during a mental task. For the special case of classifying electroencephalogram (EEG) signals we propose the usage of the state of the art feature selection algorithms Recursive Feature Elimination and Zero-Norm Optimization which are based on the training of support vector machines (SVM). These algorithms can provide more accurate solutions than standard filter methods for feature selection. We adapt the methods for the purpose of selecting EEG channels. For a motor imagery paradigm we show that the number of used channels can be reduced significantly without increasing the classification error. The resulting best channels agree well with the expected underlying cortical activity patterns during the mental tasks. Furthermore we show how time dependent task specific information can be visualized.


Asunto(s)
Algoritmos , Inteligencia Artificial , Corteza Cerebral/fisiología , Electroencefalografía/métodos , Potenciales Evocados Motores/fisiología , Interfaz Usuario-Computador , Análisis por Conglomerados , Mano/fisiología , Humanos , Masculino , Reconocimiento de Normas Patrones Automatizadas , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA