Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nature ; 468(7323): 527-32, 2010 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-21107422

RESUMEN

Sugar efflux transporters are essential for the maintenance of animal blood glucose levels, plant nectar production, and plant seed and pollen development. Despite broad biological importance, the identity of sugar efflux transporters has remained elusive. Using optical glucose sensors, we identified a new class of sugar transporters, named SWEETs, and show that at least six out of seventeen Arabidopsis, two out of over twenty rice and two out of seven homologues in Caenorhabditis elegans, and the single copy human protein, mediate glucose transport. Arabidopsis SWEET8 is essential for pollen viability, and the rice homologues SWEET11 and SWEET14 are specifically exploited by bacterial pathogens for virulence by means of direct binding of a bacterial effector to the SWEET promoter. Bacterial symbionts and fungal and bacterial pathogens induce the expression of different SWEET genes, indicating that the sugar efflux function of SWEET transporters is probably targeted by pathogens and symbionts for nutritional gain. The metazoan homologues may be involved in sugar efflux from intestinal, liver, epididymis and mammary cells.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glucosa/metabolismo , Interacciones Huésped-Patógeno/fisiología , Proteínas de Transporte de Membrana/metabolismo , Animales , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Transporte Biológico/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Células HEK293 , Humanos , Modelos Biológicos , Oryza/genética , Oryza/metabolismo , Oryza/microbiología , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Xenopus/genética
2.
J Exp Bot ; 66(9): 2733-48, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25750424

RESUMEN

Membrane proteins are synthesized and folded in the endoplasmic reticulum (ER), and continue their path to their site of residence along the secretory pathway. The COPII system has been identified as a key player for selecting and directing the fate of membrane and secretory cargo proteins. Selection of cargo proteins within the COPII vesicles is achieved by cargo receptors. The cornichon cargo receptor belongs to a conserved protein family found in eukaryotes that has been demonstrated to participate in the selection of integral membrane proteins as cargo for their correct targeting. Here it is demonstrated at the cellular level that rice cornichon OsCNIH1 interacts with OsHKT1;3 and, in yeast cells, enables the expression of the sodium transporter to the Golgi apparatus. Physical and functional HKT-cornichon interactions are confirmed by the mating-based split ubiquitin system, bimolecular fluorescence complementation, and Xenopus oocyte and yeast expression systems. The interaction between the two proteins occurs in the ER of plant cells and their co-expression in oocytes leads to the sequestration of the transporter in the ER. In the yeast cornichon mutant erv14, OsHKT1;3 is mistargeted, preventing the toxic effects of sodium transport in the cell observed in wild-type cells or in the erv14 mutant that co-expressed OsHKT1;3 with either OsCNIH1 or Erv14p. Identification and characterization of rice cornichon as a possible cargo receptor opens up the opportunity to improve our knowledge on membrane protein targeting in plant cells.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Aparato de Golgi/metabolismo , Oryza/metabolismo , Proteínas de Plantas/fisiología , Secuencia de Aminoácidos , Animales , Transporte Biológico , Proteínas de Transporte de Catión/genética , Retículo Endoplásmico/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/fisiología , Datos de Secuencia Molecular , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mapeo de Interacción de Proteínas , Alineación de Secuencia , Análisis de Secuencia de Proteína , Sodio/metabolismo , Xenopus
3.
Dev Cell ; 13(2): 177-89, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17681130

RESUMEN

Brassinosteroids (BRs) are essential hormones for plant growth and development. BRs regulate gene expression by inducing dephosphorylation of two key transcription factors, BZR1 and BZR2/BES1, through a signal transduction pathway that involves cell-surface receptors (BRI1 and BAK1) and a GSK3 kinase (BIN2). How BR-regulated phosphorylation controls the activities of BZR1/BZR2 is not fully understood. Here, we show that BIN2-catalyzed phosphorylation of BZR1/BZR2 not only inhibits DNA binding, but also promotes binding to the 14-3-3 proteins. Mutations of a BIN2-phosphorylation site in BZR1 abolish 14-3-3 binding and lead to increased nuclear localization of BZR1 protein and enhanced BR responses in transgenic plants. Further, BR deficiency increases cytoplasmic localization, and BR treatment induces rapid nuclear localization of BZR1/BZR2. Thus, 14-3-3 binding is required for efficient inhibition of phosphorylated BR transcription factors, largely through cytoplasmic retention. This study demonstrates that multiple mechanisms are required for BR regulation of gene expression and plant growth.


Asunto(s)
Proteínas 14-3-3/metabolismo , Arabidopsis/metabolismo , Transducción de Señal , Esteroides Heterocíclicos/metabolismo , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sitios de Unión , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , ADN de Plantas/metabolismo , Proteínas de Unión al ADN , Regulación hacia Abajo/efectos de los fármacos , Modelos Biológicos , Datos de Secuencia Molecular , Mutación/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilación/efectos de los fármacos , Hojas de la Planta/citología , Hojas de la Planta/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Proteínas Quinasas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Esteroides Heterocíclicos/farmacología
4.
Plant Cell ; 21(11): 3610-22, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19948793

RESUMEN

The acquisition of nutrients requires tight regulation to ensure optimal supply while preventing accumulation to toxic levels. Ammonium transporter/methylamine permease/rhesus (AMT/Mep/Rh) transporters are responsible for ammonium acquisition in bacteria, fungi, and plants. The ammonium transporter AMT1;1 from Arabidopsis thaliana uses a novel regulatory mechanism requiring the productive interaction between a trimer of subunits for function. Allosteric regulation is mediated by a cytosolic C-terminal trans-activation domain, which carries a conserved Thr (T460) in a critical position in the hinge region of the C terminus. When expressed in yeast, mutation of T460 leads to inactivation of the trimeric complex. This study shows that phosphorylation of T460 is triggered by ammonium in a time- and concentration-dependent manner. Neither Gln nor l-methionine sulfoximine-induced ammonium accumulation were effective in inducing phosphorylation, suggesting that roots use either the ammonium transporter itself or another extracellular sensor to measure ammonium concentrations in the rhizosphere. Phosphorylation of T460 in response to an increase in external ammonium correlates with inhibition of ammonium uptake into Arabidopsis roots. Thus, phosphorylation appears to function in a feedback loop restricting ammonium uptake. This novel autoregulatory mechanism is capable of tuning uptake capacity over a wide range of supply levels using an extracellular sensory system, potentially mediated by a transceptor (i.e., transporter and receptor).


Asunto(s)
Arabidopsis/metabolismo , Proteínas de Transporte de Catión/metabolismo , Retroalimentación Fisiológica/fisiología , Fósforo/metabolismo , Fosfotransferasas/metabolismo , Proteínas de Plantas/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Regulación Alostérica/fisiología , Secuencia de Aminoácidos/fisiología , Arabidopsis/genética , Autorreceptores/metabolismo , Proteínas de Transporte de Catión/química , Secuencia Conservada/fisiología , Homeostasis/fisiología , Fosforilación , Proteínas de Plantas/química , Raíces de Plantas/metabolismo , Estructura Terciaria de Proteína/fisiología , Subunidades de Proteína/metabolismo , Treonina/metabolismo , Factores de Tiempo
5.
Plant J ; 56(6): 948-62, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18702670

RESUMEN

Although soil contains only traces of soluble carbohydrates, plant roots take up glucose and sucrose efficiently when supplied in artificial media. Soluble carbohydrates and other small metabolites found in soil are in part products from exudation from plant roots. The molecular nature of the transporters for uptake and exudation is unknown. Here, fluorescence resonance energy transfer (FRET) glucose and sucrose sensors were used to characterize accumulation and elimination of glucose and sucrose in Arabidopsis roots tips. Using an improved image acquisition set-up, FRET responses to perfusion with carbohydrates were detectable in roots within less than 10 sec and over a wide concentration range. Accumulation was fully reversible within 10-180 sec after glucose or sucrose had been withdrawn; elimination may be caused by metabolism and/or efflux. The rate of elimination was unaffected by pre-incubation with high concentrations of glucose, suggesting that elimination is not due to accumulation in a short-term buffer such as the vacuole. Glucose and sucrose accumulation was insensitive to protonophores, was comparable in media differing in potassium levels, and was similar at pH 5.8, 6.8 and 7.8, suggesting that both influx and efflux may be mediated by proton-independent transport systems. High-resolution expression mapping in root tips showed that only a few proton-dependent transport of the STP (Sugar Transport Protein) and SUT/SUC (Sucrose Transporter/Carrier) families are expressed in the external cell layers of root tips. The root expression maps may help to pinpoint candidate genes for uptake and release of carbohydrates from roots.


Asunto(s)
Arabidopsis/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Glucosa/metabolismo , Sacarosa/metabolismo , Técnicas Biosensibles/métodos , Concentración de Iones de Hidrógeno , Ionóforos/metabolismo , Meristema/metabolismo , Microscopía Confocal , Nanotecnología/métodos
6.
Plant J ; 53(4): 610-35, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18269572

RESUMEN

Homotypic and heterotypic protein interactions are crucial for all levels of cellular function, including architecture, regulation, metabolism, and signaling. Therefore, protein interaction maps represent essential components of post-genomic toolkits needed for understanding biological processes at a systems level. Over the past decade, a wide variety of methods have been developed to detect, analyze, and quantify protein interactions, including surface plasmon resonance spectroscopy, NMR, yeast two-hybrid screens, peptide tagging combined with mass spectrometry and fluorescence-based technologies. Fluorescence techniques range from co-localization of tags, which may be limited by the optical resolution of the microscope, to fluorescence resonance energy transfer-based methods that have molecular resolution and can also report on the dynamics and localization of the interactions within a cell. Proteins interact via highly evolved complementary surfaces with affinities that can vary over many orders of magnitude. Some of the techniques described in this review, such as surface plasmon resonance, provide detailed information on physical properties of these interactions, while others, such as two-hybrid techniques and mass spectrometry, are amenable to high-throughput analysis using robotics. In addition to providing an overview of these methods, this review emphasizes techniques that can be applied to determine interactions involving membrane proteins, including the split ubiquitin system and fluorescence-based technologies for characterizing hits obtained with high-throughput approaches. Mass spectrometry-based methods are covered by a review by Miernyk and Thelen (2008; this issue, pp. 597-609). In addition, we discuss the use of interaction data to construct interaction networks and as the basis for the exciting possibility of using to predict interaction surfaces.


Asunto(s)
Proteínas de Plantas/metabolismo , Mapeo de Interacción de Proteínas/métodos , Transferencia Resonante de Energía de Fluorescencia , Espectrometría de Masas , Modelos Biológicos , Proteínas de Plantas/química , Proteínas de Plantas/genética , Unión Proteica , Resonancia por Plasmón de Superficie , Técnicas del Sistema de Dos Híbridos
7.
Annu Rev Plant Biol ; 55: 341-72, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15377224

RESUMEN

Sugars and amino acids are generated in plants by assimilation from inorganic forms. Assimilated forms cross multiple membranes on their way from production sites to storage or use locations. Specific transport systems are responsible for vacuolar uptake and release, for efflux from the cells, and for uptake into the vasculature. Detailed phylogenetic analyses suggest that only proton-coupled cotransporters involved in phloem loading have been identified to date, whereas systems for vacuolar transport and efflux still await identification. Novel imaging approaches may provide the means to characterize the cellular events and elucidate whole plant control of assimilate partitioning and allocation.


Asunto(s)
Carbono/metabolismo , Nitrógeno/metabolismo , Compuestos Orgánicos/metabolismo , Plantas/metabolismo , Aminoácidos/biosíntesis , Metabolismo de los Hidratos de Carbono , Humanos , Péptidos/metabolismo , Sacarosa/metabolismo , Vacuolas/metabolismo
8.
Curr Opin Plant Biol ; 8(6): 574-81, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16188489

RESUMEN

Fluorescent labels have revolutionized cell biology. Signaling intermediates and metabolites can be measured in real time with subcellular spatial resolution. Most of these sensors are based on fluorescent proteins, and many report fluorescence resonance energy transfer. Because the biosensors are genetically encoded, a toolbox for addressing cell biological questions at the systems level is now available. Fluorescent biosensors are able to determine the localization of proteins and their dynamics, to reveal the cellular and subcellular localization of the respective interactions and activities, and to provide complementary data on the steady state levels of ions, metabolites, and signaling intermediates with high temporal and spatial resolution. They represent the basis for cell-based high-throughput assays that are necessary for a systems perspective on plant cell function.


Asunto(s)
Técnicas Biosensibles/métodos , Metabolismo , Transducción de Señal , Fluorescencia , Transferencia Resonante de Energía de Fluorescencia , Potenciales de la Membrana
9.
Curr Opin Plant Biol ; 7(3): 345-51, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15134757

RESUMEN

By 2010, it is expected that biochemical functions will be assigned to many of the products of the approximately 30,000 Arabidopsis genes. Moreover, systematic analysis of mutants will provide insight into the biological function of the gene products. Metabolomic technologies complement these approaches by testing for changes in cellular ion and metabolite patterns, providing essential information for the construction of cellular and whole-plant models of metabolism. However, one important set of information that is especially relevant for multicellular organisms is still lacking, that is, knowledge of the cellular and subcellular variation in metabolite levels. The recent development of protein-based nanosensors for metabolites will help to close this gap by providing a set of tools that can be used to determine cytosolic and subcellular metabolite levels in real time using fluorescence-based microscopy. A major challenge for the future is the application of these nanosensors to quantify metabolite levels in plant cells and tissues.


Asunto(s)
Diagnóstico por Imagen , Iones/metabolismo , Plantas/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Genes de Plantas , Microscopía Fluorescente , Modelos Moleculares , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sensibilidad y Especificidad
10.
FEBS Lett ; 580(25): 5885-93, 2006 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-17034793

RESUMEN

Genetically-encoded fluorescence resonance energy transfer (FRET) sensors for phosphate (P(i)) (FLIPPi) were engineered by fusing a predicted Synechococcus phosphate-binding protein (PiBP) to eCFP and Venus. Purified fluorescent indicator protein for inorganic phosphate (FLIPPi), in which the fluorophores are attached to the same PiBP lobe, shows P(i)-dependent increases in FRET efficiency. FLIPPi affinity mutants cover P(i) changes over eight orders of magnitude. COS-7 cells co-expressing a low-affinity FLIPPi and a Na(+)/P(i) co-transporter exhibited FRET changes when perfused with 100 microM P(i), demonstrating concentrative P(i) uptake by PiT2. FLIPPi sensors are suitable for real-time monitoring of P(i) metabolism in living cells, providing a new tool for fluxomics, analysis of pathophysiology or changes of P(i) during cell migration.


Asunto(s)
Técnicas Biosensibles/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Fosfatos/metabolismo , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Sitios de Unión/genética , Células CHO , Células COS , Chlorocebus aethiops , Cricetinae , ADN Bacteriano/genética , Colorantes Fluorescentes , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Cinética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas de Unión a Fosfato/química , Proteínas de Unión a Fosfato/genética , Proteínas de Unión a Fosfato/metabolismo , Conformación Proteica , Ingeniería de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Eliminación de Secuencia , Synechococcus/genética , Synechococcus/metabolismo
11.
FEBS Lett ; 553(1-2): 85-9, 2003 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-14550551

RESUMEN

To analyze ribose uptake and metabolism in living cells, nanosensors were engineered by flanking the Escherichia coli periplasmic ribose binding protein with two green fluorescent protein variants. Following binding of ribose, fluorescence resonance energy transfer decreased with increasing ribose concentration. Five affinity mutants were generated covering binding constants between 400 nM and 11.7 mM. Analysis of nanosensor response in COS-7 cells showed that free ribose accumulates in the cell and is slowly metabolized. Inhibitor studies suggest that uptake is mediated by a monosaccharide transporter of the GLUT family, however, ribose taken up into the cell was not or only slowly released, indicating irreversibility of uptake.


Asunto(s)
Técnicas Biosensibles/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Nanotecnología/métodos , Ribosa/análisis , Animales , Transporte Biológico , Células COS , Citosol/metabolismo , Escherichia coli , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Mutación , Proteínas de Unión Periplasmáticas/química , Proteínas de Unión Periplasmáticas/metabolismo , Ribosa/química , Ribosa/metabolismo , Especificidad por Sustrato , Termodinámica
12.
BMC Plant Biol ; 3: 8, 2003 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-14667250

RESUMEN

BACKGROUND: Plant phloem consists of an interdependent cell pair, the sieve element/companion cell complex. Sucrose transporters are localized to enucleate sieve elements (SE), despite being transcribed in companion cells (CC). Due to the high turnover of SUT1, sucrose transporter mRNA or protein must traffic from CC to SE via the plasmodesmata. Localization of SUT mRNA at plasmodesmatal orifices connecting CC and SE suggests RNA transport, potentially mediated by RNA binding proteins. In many organisms, polar RNA transport is mediated through RNA binding proteins interacting with the 3'-UTR and controlling localized protein synthesis. To study mechanisms for trafficking of SUT1, GFP-fusions with and without 3'-UTR were expressed in transgenic plants. RESULTS: In contrast to plants expressing GFP from the strong SUC2 promoter, in RolC-controlled expression GFP is retained in companion cells. The 3'-UTR of SUT1 affected intracellular distribution of GFP but was insufficient for trafficking of SUT1, GFP or their fusions to SEs. Fusion of GFP to SUT1 did however lead to accumulation of SUT1-GFP in the CC, indicating that trafficking was blocked while translational inhibition of SUT1 mRNA was released in CCs. CONCLUSION: A fusion with GFP prevents targeting of the sucrose transporter SUT1 to the SE while leading to accumulation in the CC. The 3'-UTR of SUT1 is insufficient for mobilization of either the fusion or GFP alone. It is conceivable that SUT1-GFP protein transport through PD to SE was blocked due to the presence of GFP, resulting in retention in CC particles. Alternatively, SUT1 mRNA transport through the PD could have been blocked due to insertion of GFP between the SUT1 coding sequence and 3'-UTR.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Estructuras de las Plantas/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Regiones no Traducidas 3'/genética , Secuencia de Bases , Transporte Biológico , Glucuronidasa/genética , Glucuronidasa/metabolismo , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Transporte de Membrana/genética , Microscopía Confocal , Hojas de la Planta/citología , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Estructuras de las Plantas/citología , Plantas Modificadas Genéticamente , Plasmodesmos/metabolismo , Poli A/genética , Poliadenilación , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/genética , Nicotiana/genética , Nicotiana/metabolismo
14.
BMC Biochem ; 4: 3, 2003 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-12689351

RESUMEN

BACKGROUND: The Arabidopsis genome contains nine sucrose transporter paralogs falling into three clades: SUT1-like, SUT2 and SUT4. The carriers differ in their kinetic properties. Many transport proteins are known to exist as oligomers. The yeast-based split ubiquitin system can be used to analyze the ability of membrane proteins to interact. RESULTS: Promoter-GUS fusions were used to analyze the cellular expression of the three transporter genes in transgenic Arabidopsis plants. All three fusion genes are co-expressed in companion cells. Protein-protein interactions between Arabidopsis sucrose transporters were tested using the split ubiquitin system. Three paralogous sucrose transporters are capable of interacting as either homo- or heteromers. The interactions are specific, since a potassium channel and a glucose transporter did not show interaction with sucrose transporters. Also the biosynthetic and metabolizing enzymes, sucrose phosphate phosphatase and sucrose synthase, which were found to be at least in part bound to the plasma membrane, did not specifically interact with sucrose transporters. CONCLUSIONS: The split-ubiquitin system provides a powerful tool to detect potential interactions between plant membrane proteins by heterologous expression in yeast, and can be used to screen for interactions with membrane proteins as baits. Like other membrane proteins, the Arabidopsis sucrose transporters are able to form oligomers. The biochemical approaches are required to confirm the in planta interaction.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Proteínas de Arabidopsis/biosíntesis , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Glucuronidasa/biosíntesis , Glucuronidasa/genética , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/biosíntesis , Proteínas de Plantas/biosíntesis , Regiones Promotoras Genéticas/genética , Mapeo de Interacción de Proteínas , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/biosíntesis
15.
Science ; 344(6185): 711-6, 2014 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-24833385

RESUMEN

Cellular membranes act as signaling platforms and control solute transport. Membrane receptors, transporters, and enzymes communicate with intracellular processes through protein-protein interactions. Using a split-ubiquitin yeast two-hybrid screen that covers a test-space of 6.4 × 10(6) pairs, we identified 12,102 membrane/signaling protein interactions from Arabidopsis. Besides confirmation of expected interactions such as heterotrimeric G protein subunit interactions and aquaporin oligomerization, >99% of the interactions were previously unknown. Interactions were confirmed at a rate of 32% in orthogonal in planta split-green flourescent protein interaction assays, which was statistically indistinguishable from the confirmation rate for known interactions collected from literature (38%). Regulatory associations in membrane protein trafficking, turnover, and phosphorylation include regulation of potassium channel activity through abscisic acid signaling, transporter activity by a WNK kinase, and a brassinolide receptor kinase by trafficking-related proteins. These examples underscore the utility of the membrane/signaling protein interaction network for gene discovery and hypothesis generation in plants and other organisms.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Mapas de Interacción de Proteínas , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de la Membrana/genética , Transducción de Señal , Técnicas del Sistema de Dos Híbridos
16.
Front Plant Sci ; 3: 24, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22645575

RESUMEN

Most metazoa use hexose transporters to acquire hexoses from their diet and as a transport form for distributing carbon and energy within their bodies; insects use trehalose, and plants use sucrose as their major form for translocation. Plant genomes contain at least three families of mono- and disaccharide transporters: monosaccharide/polyol transporters that are evolutionary closely related to the yeast and human glucose transporters, sucrose transporters of the SUT family, which similar to the hexose transporters belong to the major facilitator superfamily, but share only minimal amino acid sequence homology with the hexose transporters, and the family of SWEET sugar transporters conserved between animals and plants. Recently, the genome sequence of the spikemoss Selaginella has been determined. In order to study the evolution of sugar transport in plants, we carefully annotated of the complement of sugar transporters in Selaginella. We review the current knowledge regarding sugar transport in spikemoss and provide phylogenetic analyses of the complement of MST and SUT homologs in Selaginella (and Physcomitrella).

17.
Front Plant Sci ; 3: 36, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22639646

RESUMEN

Amino acids play fundamental roles in a multitude of functions including protein synthesis, hormone metabolism, nerve transmission, cell growth, production of metabolic energy, nucleobase synthesis, nitrogen metabolism, and urea biosynthesis. Selaginella as a member of the lycophytes is part of an ancient lineage of vascular plants that had arisen ∼400 million years ago. In angiosperms, which have attracted most of the attention for nutrient transport so far, we have been able to identify many of the key transporters for nitrogen. Their role is not always fully clear, thus an analysis of Selaginella as a representative of an ancient vascular plant may help shed light on the evolution and function of these diverse transporters. Here we annotated and analyzed the genes encoding putative transporters involved in cellular uptake of amino acids present in the Selaginella genome.

18.
Front Plant Sci ; 3: 62, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22639655

RESUMEN

Ammonium and urea are important nitrogen sources for autotrophic organisms. Plant genomes encode several families of specific transporters for these molecules, plus other uptake mechanisms such as aquaporins and ABC transporters. Selaginella and Physcomitrella are representatives of lycophytes and bryophytes, respectively, and the recent completion of their genome sequences provided us with an opportunity for comparative genome studies, with special emphasis on the adaptive processes that accompanied the conquest of dry land and the evolution of a vascular system. Our phylogenetic analysis revealed that the number of genes encoding urea transporters underwent a progressive reduction during evolution, eventually down to a single copy in vascular plants. Conversely, no clear evolutionary pattern was found for ammonium transporters, and their number and distribution in families varies between species. In particular Selaginella, similar to rice, favors the AMT2/MEP family of ammonium transporters over the plant-specific AMT1 type. In comparison, Physcomitrella presents several members belonging to both families.

19.
Front Plant Sci ; 3: 124, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22737156

RESUMEN

High-throughput data are a double-edged sword; for the benefit of large amount of data, there is an associated cost of noise. To increase reliability and scalability of high-throughput protein interaction data generation, we tested the efficacy of classification to enrich potential protein-protein interactions. We applied this method to identify interactions among Arabidopsis membrane proteins enriched in transporters. We validated our method with multiple retests. Classification improved the quality of the ensuing interaction network and was effective in reducing the search space and increasing true positive rate. The final network of 541 interactions among 239 proteins (of which 179 are transporters) is the first protein interaction network enriched in membrane transporters reported for any organism. This network has similar topological attributes to other published protein interaction networks. It also extends and fills gaps in currently available biological networks in plants and allows building a number of hypotheses about processes and mechanisms involving signal-transduction and transport systems.

20.
Nat Protoc ; 6(11): 1818-33, 2011 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-22036884

RESUMEN

Knowledge of the in vivo levels, distribution and flux of ions and metabolites is crucial to our understanding of physiology in both healthy and diseased states. The quantitative analysis of the dynamics of ions and metabolites with subcellular resolution in vivo poses a major challenge for the analysis of metabolic processes. Genetically encoded Förster resonance energy transfer (FRET) sensors can be used for real-time in vivo detection of metabolites. FRET sensor proteins, for example, for glucose, can be targeted genetically to any cellular compartment, or even to subdomains (e.g., a membrane surface), by adding signal sequences or fusing the sensors to specific proteins. The sensors can be used for analyses in individual mammalian cells in culture, in tissue slices and in intact organisms. Applications include gene discovery, high-throughput drug screens or systematic analysis of regulatory networks affecting uptake, efflux and metabolism. Quantitative analyses obtained with the help of FRET sensors for glucose or other ions and metabolites provide valuable data for modeling of flux. Here we provide a detailed protocol for monitoring glucose levels in the cytosol of mammalian cell cultures through the use of FRET glucose sensors; moreover, the protocol can be used for other ions and metabolites and for analyses in other organisms, as has been successfully demonstrated in bacteria, yeast and even intact plants. The whole procedure typically takes ∼4 d including seeding and transfection of mammalian cells; the FRET-based analysis of transfected cells takes ∼5 h.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/instrumentación , Transferencia Resonante de Energía de Fluorescencia/métodos , Animales , Línea Celular , Glucosa/metabolismo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA