Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Eur J Appl Physiol ; 123(11): 2525-2535, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37326876

RESUMEN

PURPOSE: To determine associations between immediate and delayed response of serum cartilage oligomeric matrix protein (sCOMP) to loading (i.e., 3000 walking steps) and femoral cartilage interlimb T1ρ relaxation times in individual's post-anterior cruciate ligament reconstruction (ACLR). METHODS: This cross-sectional study included 20 individuals 6-12 months following primary ACLR (65% female, 20.5 ± 4.0 years old, 24.9 ± 3.0 kg/m2, 7.3 ± 1.5 months post-ACLR). Serum samples were collected prior to, immediately following, and 3.5 h following walking 3000 steps on a treadmill at habitual walking speed. sCOMP concentrations were processed using enzyme-linked immunosorbent assays. Immediate and delayed absolute sCOMP responses to loading were evaluated immediately and 3.5 h post-walking, respectively. Participants underwent bilateral magnetic resonance imaging with T1ρ sequences to calculate resting femoral cartilage interlimb T1ρ relaxation time ratios between limbs (i.e., ACLR/Uninjured limb). Linear regression models were fitted to determine associations between sCOMP response to loading and femoral cartilage T1ρ outcomes controlling for pre-loading sCOMP concentrations. RESULTS: Greater increases in delayed sCOMP response to loading were associated with greater lateral (∆R2 = 0.29, p = 0.02) but not medial (∆R2 < 0.01, p = 0.99) femoral cartilage interlimb T1ρ ratios. Associations between immediate sCOMP response to loading with femoral cartilage interlimb T1ρ ratios were weak and non-significant (∆R2 range = 0.02-0.09, p range = 0.21-0.58). CONCLUSION: Greater delayed sCOMP response to loading, a biomarker of cartilage breakdown, is associated with worse lateral femoral cartilage composition in the ACLR limb compared to the uninjured limb. Delayed sCOMP response to loading may be a more indicative metabolic indicator linked to deleterious changes in composition than immediate sCOMP response.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Reconstrucción del Ligamento Cruzado Anterior , Cartílago Articular , Adolescente , Femenino , Humanos , Masculino , Adulto Joven , Lesiones del Ligamento Cruzado Anterior/cirugía , Reconstrucción del Ligamento Cruzado Anterior/métodos , Proteína de la Matriz Oligomérica del Cartílago , Estudios Transversales , Articulación de la Rodilla , Imagen por Resonancia Magnética/métodos
2.
Knee Surg Sports Traumatol Arthrosc ; 27(8): 2632-2642, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30560446

RESUMEN

PURPOSE: Quadriceps weakness following anterior cruciate ligament reconstruction (ACLR) is linked to decreased patient-reported function, altered lower extremity biomechanics and tibiofemoral joint space narrowing. It remains unknown if quadriceps weakness is associated with early deleterious changes to femoral cartilage composition that are suggestive of posttraumatic osteoarthritis development. The purpose of the cross-sectional study was to determine if quadriceps strength was associated with T1ρ relaxation times, a marker of proteoglycan density, of the articular cartilage in the medial and lateral femoral condyles 6 months following ACLR. It is hypothesized that individuals with weaker quadriceps would demonstrate lesser proteoglycan density. METHODS: Twenty-seven individuals (15 females, 12 males) with a patellar tendon autograft ACLR underwent isometric quadriceps strength assessments in 90°of knee flexion during a 6-month follow-up exam. Magnetic resonance images (MRI) were collected bilaterally and voxel by voxel T1ρ relaxation times were calculated using a five-image sequence and a monoexponential equation. Following image registration, the articular cartilage for the weight-bearing surfaces of the medial and lateral femoral condyles (MFC and LFC) were manually segmented and further sub-sectioned into posterior, central and anterior regions of interest (ROI) based on the corresponding meniscal anatomy viewed in the sagittal plane. Univariate linear regression models were used to determine the association between quadriceps strength and T1ρ relaxation times in the entire weight-bearing MFC and LFC, as well as the ROI in each respective limb. RESULTS: Lesser quadriceps strength was significantly associated with greater T1ρ relaxation times in the entire weight-bearing MFC (R2 = 0.14, P = 0.05) and the anterior-MFC ROI (R2 = 0.22, P = 0.02) of the ACLR limb. A post hoc analysis found lesser strength and greater T1ρ relaxation times were significantly associated in a subsection of participants (n = 18) without a concomitant medial tibiofemoral compartment meniscal or chondral injury in the entire weight-bearing MFC, as well as anterior-MFC and central-MFC ROI of the ACLR and uninjured limb. CONCLUSIONS: The association between weaker quadriceps and greater T1ρ relaxation times in the MFC suggests deficits in lower extremity muscle strength may be related to cartilage composition as early as 6 months following ACLR. Maximizing quadriceps strength in the first 6 months following ACLR may be critical for promoting cartilage health early following ACLR. LEVEL OF EVIDENCE: Prognostic level 1.


Asunto(s)
Reconstrucción del Ligamento Cruzado Anterior , Cartílago Articular/diagnóstico por imagen , Fuerza Muscular , Proteoglicanos/análisis , Músculo Cuádriceps/fisiología , Adolescente , Adulto , Lesiones del Ligamento Cruzado Anterior/cirugía , Cartílago Articular/química , Estudios Transversales , Femenino , Fémur/cirugía , Humanos , Contracción Isométrica , Articulación de la Rodilla/diagnóstico por imagen , Articulación de la Rodilla/cirugía , Imagen por Resonancia Magnética/métodos , Masculino , Menisco , Ligamento Rotuliano/trasplante , Trasplante Autólogo , Adulto Joven
3.
Neuroimage ; 174: 550-562, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29571715

RESUMEN

Positron emission tomography (PET) is a widely used imaging modality, providing insight into both the biochemical and physiological processes of human body. Usually, a full dose radioactive tracer is required to obtain high-quality PET images for clinical needs. This inevitably raises concerns about potential health hazards. On the other hand, dose reduction may cause the increased noise in the reconstructed PET images, which impacts the image quality to a certain extent. In this paper, in order to reduce the radiation exposure while maintaining the high quality of PET images, we propose a novel method based on 3D conditional generative adversarial networks (3D c-GANs) to estimate the high-quality full-dose PET images from low-dose ones. Generative adversarial networks (GANs) include a generator network and a discriminator network which are trained simultaneously with the goal of one beating the other. Similar to GANs, in the proposed 3D c-GANs, we condition the model on an input low-dose PET image and generate a corresponding output full-dose PET image. Specifically, to render the same underlying information between the low-dose and full-dose PET images, a 3D U-net-like deep architecture which can combine hierarchical features by using skip connection is designed as the generator network to synthesize the full-dose image. In order to guarantee the synthesized PET image to be close to the real one, we take into account of the estimation error loss in addition to the discriminator feedback to train the generator network. Furthermore, a concatenated 3D c-GANs based progressive refinement scheme is also proposed to further improve the quality of estimated images. Validation was done on a real human brain dataset including both the normal subjects and the subjects diagnosed as mild cognitive impairment (MCI). Experimental results show that our proposed 3D c-GANs method outperforms the benchmark methods and achieves much better performance than the state-of-the-art methods in both qualitative and quantitative measures.


Asunto(s)
Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Tomografía de Emisión de Positrones/métodos , Adulto , Aprendizaje Profundo , Femenino , Humanos , Masculino , Dosis de Radiación , Reproducibilidad de los Resultados , Relación Señal-Ruido , Adulto Joven
4.
Neuroimage ; 112: 160-168, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25776213

RESUMEN

AIM: MR-based correction for photon attenuation in PET/MRI remains challenging, particularly for neurological applications requiring quantitation of data. Existing methods are either not sufficiently accurate or are limited by the computation time required. The goal of this study was to develop an MR-based attenuation correction method that accurately separates bone tissue from air and provides continuous-valued attenuation coefficients for bone. MATERIALS AND METHODS: PET/MRI and CT datasets were obtained from 98 subjects (mean age [±SD]: 66yrs [±9.8], 57 females) using an IRB-approved protocol and with informed consent. Subjects were injected with 352±29MBq of (18)F-Florbetapir tracer, and PET acquisitions were begun either immediately or 50min after injection. CT images of the head were acquired separately using a PET/CT system. Dual echo ultrashort echo-time (UTE) images and two-point Dixon images were acquired. Regions of air were segmented via a threshold of the voxel-wise multiplicative inverse of the UTE echo 1 image. Regions of bone were segmented via a threshold of the R2* image computed from the UTE echo 1 and UTE echo 2 images. Regions of fat and soft tissue were segmented using fat and water images decomposed from the Dixon images. Air, fat, and soft tissue were assigned linear attenuation coefficients (LACs) of 0, 0.092, and 0.1cm(-1), respectively. LACs for bone were derived from a regression analysis between corresponding R2* and CT values. PET images were reconstructed using the gold standard CT method and the proposed CAR-RiDR method. RESULTS: The RiDR segmentation method produces mean Dice coefficient±SD across subjects of 0.75±0.05 for bone and 0.60±0.08 for air. The CAR model for bone LACs greatly improves accuracy in estimating CT values (28.2%±3.0 mean error) compared to the use of a constant CT value (46.9%±5.8, p<10(-6)). Finally, the CAR-RiDR method provides a low whole-brain mean absolute percent-error (MAPE±SD) in PET reconstructions across subjects of 2.55%±0.86. Regional PET errors were also low and ranged from 0.88% to 3.79% in 24 brain ROIs. CONCLUSION: We propose an MR-based attenuation correction method (CAR-RiDR) for quantitative PET neurological imaging. The proposed method employs UTE and Dixon images and consists of two novel components: 1) accurate segmentation of air and bone using the inverse of the UTE1 image and the R2* image, respectively and 2) estimation of continuous LAC values for bone using a regression between R2* and CT-Hounsfield units. From our analysis, we conclude that the proposed method closely approaches (<3% error) the gold standard CT-scaled method in PET reconstruction accuracy.


Asunto(s)
Huesos/anatomía & histología , Huesos/diagnóstico por imagen , Imagen por Resonancia Magnética/estadística & datos numéricos , Neuroimagen/estadística & datos numéricos , Tomografía de Emisión de Positrones/estadística & datos numéricos , Tejido Adiposo/anatomía & histología , Anciano , Aire , Algoritmos , Compuestos de Anilina , Encéfalo/anatomía & histología , Encéfalo/diagnóstico por imagen , Glicoles de Etileno , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Tomografía de Emisión de Positrones/métodos , Radiofármacos , Cráneo/anatomía & histología , Cráneo/diagnóstico por imagen
5.
Radiology ; 275(2): 562-9, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25521778

RESUMEN

PURPOSE: To develop a positron emission tomography (PET) attenuation correction method for brain PET/magnetic resonance (MR) imaging by estimating pseudo computed tomographic (CT) images from T1-weighted MR and atlas CT images. MATERIALS AND METHODS: In this institutional review board-approved and HIPAA-compliant study, PET/MR/CT images were acquired in 20 subjects after obtaining written consent. A probabilistic air segmentation and sparse regression (PASSR) method was developed for pseudo CT estimation. Air segmentation was performed with assistance from a probabilistic air map. For nonair regions, the pseudo CT numbers were estimated via sparse regression by using atlas MR patches. The mean absolute percentage error (MAPE) on PET images was computed as the normalized mean absolute difference in PET signal intensity between a method and the reference standard continuous CT attenuation correction method. Friedman analysis of variance and Wilcoxon matched-pairs tests were performed for statistical comparison of MAPE between the PASSR method and Dixon segmentation, CT segmentation, and population averaged CT atlas (mean atlas) methods. RESULTS: The PASSR method yielded a mean MAPE ± standard deviation of 2.42% ± 1.0, 3.28% ± 0.93, and 2.16% ± 1.75, respectively, in the whole brain, gray matter, and white matter, which were significantly lower than the Dixon, CT segmentation, and mean atlas values (P < .01). Moreover, 68.0% ± 16.5, 85.8% ± 12.9, and 96.0% ± 2.5 of whole-brain volume had within ±2%, ±5%, and ±10% percentage error by using PASSR, respectively, which was significantly higher than other methods (P < .01). CONCLUSION: PASSR outperformed the Dixon, CT segmentation, and mean atlas methods by reducing PET error owing to attenuation correction.


Asunto(s)
Encefalopatías/diagnóstico , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Tomografía de Emisión de Positrones/métodos , Tomografía Computarizada por Rayos X/métodos , Anciano , Aire , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Estadísticos
6.
J Orthop Res ; 42(4): 729-736, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37874323

RESUMEN

This study aimed to create a conversion equation that accurately predicts cartilage magnetic resonance imaging (MRI) T2 relaxation times using ultrasound echo-intensity and common participant demographics. We recruited 15 participants with a primary anterior cruciate ligament reconstruction between the ages of 18 and 35 years at 1-5 years after surgery. A single investigator completed a transverse suprapatellar scan with the ACLR limb in max knee flexion to image the femoral trochlea cartilage. A single reader manually segmented the femoral cartilage cross-sectional area to assess the echo-intensity (i.e., mean gray-scale pixel value). At a separate visit, a T2 mapping sequence with the MRI beam set to an oblique angle was used to image the femoral trochlea cartilage. A single reader manually segmented the cartilage cross-sectional area on a single MRI slice to assess the T2 relaxation time. A stepwise, multiple linear regression was used to predict T2 relaxation time from cartilage echo-intensity and common demographic variables. We created a conversion equation using the regression betas and then used an ICC and Bland-Altman plot to assess agreement between the estimated and true T2 relaxation time. Cartilage ultrasound echo-intensity and age significantly predicted T2 relaxation time (F = 7.33, p = 0.008, R2 = 0.55). When using the new conversion equation to estimate T2 relaxation time from cartilage echo-intensity and age, there was strong agreement between the estimated and true T2 relaxation time (ICC2,k = 0.84). This study provides promising preliminary data that cartilage echo-intensity combined with age can be used as a clinically accessible tool for evaluating cartilage composition.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Reconstrucción del Ligamento Cruzado Anterior , Cartílago Articular , Humanos , Adolescente , Adulto Joven , Adulto , Articulación de la Rodilla/patología , Cartílago Articular/patología , Fémur/diagnóstico por imagen , Fémur/cirugía , Lesiones del Ligamento Cruzado Anterior/cirugía , Reconstrucción del Ligamento Cruzado Anterior/métodos , Imagen por Resonancia Magnética/métodos
7.
Molecules ; 18(5): 5594-610, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23676470

RESUMEN

Angiogenesis plays a key role in cancer progression and correlates with disease aggressiveness and poor clinical outcomes. Affinity ligands discovered by screening phage display random peptide libraries can be engineered to molecularly target tumor blood vessels for noninvasive imaging and early detection of tumor aggressiveness. In this study, we tested the ability of a phage-display-selected peptide sequence recognizing specifically bone marrow- derived pro-angiogenic tumor-homing cells, the QFP-peptide, radiolabeled with 64Cu radioisotope to selectively image tumor vasculature in vivo by positron emission tomography (PET). To prepare the targeted PET tracer we modified QFP-phage with the DOTA chelator and radiolabeled the purified QFP-phage-DOTA intermediate with 64Cu to obtain QFP-targeted radioconjugate with high radiopharmaceutical yield and specific activity. We evaluated the new PET tracer in vivo in a subcutaneous (s.c.) Lewis lung carcinoma (LLC) mouse model and conducted tissue distribution, small animal PET/CT imaging study, autoradiography, histology, fluorescence imaging, and dosimetry assessments. The results from this study show that, in the context of the s.c. LLC immunocompetent mouse model, the QFP-tracer can target tumor blood vessels selectively. However, further optimization of the biodistribution and dosimetry profile of the tracer is necessary to ensure efficient radiopharmaceutical applications enabled by the biological specificity of the QFP-peptide.


Asunto(s)
Carcinoma Pulmonar de Lewis , Neovascularización Patológica , Péptidos , Tomografía de Emisión de Positrones , Radiofármacos , Animales , Carcinoma Pulmonar de Lewis/diagnóstico por imagen , Carcinoma Pulmonar de Lewis/metabolismo , Cobre/química , Femenino , Isótopos/química , Ratones , Neovascularización Patológica/diagnóstico por imagen , Neovascularización Patológica/metabolismo , Péptidos/síntesis química , Péptidos/química , Péptidos/farmacología , Radiografía , Radiofármacos/síntesis química , Radiofármacos/química , Radiofármacos/farmacología
8.
Trials ; 24(1): 150, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36855177

RESUMEN

BACKGROUND: The perimenopausal transition is accompanied by psychiatric symptoms in over 10% of women. Symptoms commonly include depressed mood and anhedonia and less commonly include psychosis. Psychiatric symptoms have been linked to the depletion and/or variability of circulating estradiol, and estradiol treatment reduces perimenopausal anhedonia and psychosis in some women. Estrogen fluctuations may disrupt function in the mesolimbic reward system in some women, leading to psychiatric symptoms like anhedonia or psychosis. The Perimenopausal Effects of Estradiol on Anhedonia and Psychosis Study (PEEPs) is a mechanistic clinical trial that aims to (1) identify relationships between perimenopausal-onset anhedonia and psychosis and neuromolecular markers of mesolimbic reward responses and (2) determine the extent to which estradiol treatment-induced changes in mesolimbic reward responses are associated with alleviation of perimenopausal onset anhedonia or psychosis. METHODS: This study will recruit 100 unmedicated women ages 44-55 in the late-stage perimenopausal transition, sampling across the range of mild-to-high anhedonia and absent-to-moderate psychosis symptoms. Patients will be randomized to receive either estradiol or placebo treatment for 3 weeks. Clinical outcome measures will include symptoms of anhedonia (measured with Snaith-Hamilton Pleasure Scale; SHAPS) and psychosis (measured with Brief Psychiatric Rating Scale; BPRS psychosis subscale) as well as neural markers of mesolimbic reward system functioning, including reward-related fMRI activation and PET-derived measure of striatal dopamine binding. Pre-treatment associations between (1) SHAPS/BPRS scores and (2) reward-related striatal dopamine binding/BOLD activation will be examined. Furthermore, longitudinal mixed models will be used to estimate (1) symptom and neuromolecular trajectories as a function of estradiol vs. placebo treatment and (2) how changes in reward-related striatal dopamine binding and BOLD activation predict variability in symptom trajectories in response to estradiol treatment. DISCUSSION: This clinical trial will be the first to characterize neural and molecular mechanisms by which estradiol treatment ameliorates anhedonia and psychosis symptoms during the perimenopausal transition, thus laying the groundwork for future biomarker research to predict susceptibility and prognosis and develop targeted treatments for perimenopausal psychiatric symptoms. Furthermore, in alignment with the National Institute for Mental Health Research Domain Criteria initiative, this trial will improve our understanding of a range of disorders characterized by anhedonia, psychosis, and reward system dysfunction. TRIAL REGISTRATION: ClinicalTrials.gov NCT05282277.


Asunto(s)
Estradiol , Trastornos Psicóticos , Femenino , Humanos , Estradiol/uso terapéutico , Anhedonia , Dopamina , Perimenopausia , Trastornos Psicóticos/diagnóstico , Trastornos Psicóticos/tratamiento farmacológico , Ensayos Clínicos Controlados Aleatorios como Asunto
9.
Psychiatry Res Neuroimaging ; 333: 111660, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37301129

RESUMEN

BACKGROUND: Anhedonia is hypothesized to be associated with blunted mesocorticolimbic dopamine (DA) functioning in samples with major depressive disorder. The purpose of this study was to examine linkages between striatal DA, reward circuitry functioning, anhedonia, and, in an exploratory fashion, self-reported stress, in a transdiagnostic anhedonic sample. METHODS: Participants with (n = 25) and without (n = 12) clinically impairing anhedonia completed a reward-processing task during simultaneous positron emission tomography and magnetic resonance (PET-MR) imaging with [11C]raclopride, a DA D2/D3 receptor antagonist that selectively binds to striatal DA receptors. RESULTS: Relative to controls, the anhedonia group exhibited decreased task-related DA release in the left putamen, caudate, and nucleus accumbens and right putamen and pallidum. There were no group differences in task-related brain activation (fMRI) during reward processing after correcting for multiple comparisons. General functional connectivity (GFC) findings revealed blunted fMRI connectivity between PET-derived striatal seeds and target regions in the anhedonia group. Associations were identified between anhedonia severity and the magnitude of task-related DA release to rewards in the left putamen, but not mesocorticolimbic GFC. CONCLUSIONS: Results provide evidence for reduced striatal DA functioning during reward processing and blunted mesocorticolimbic network functional connectivity in a transdiagnostic sample with clinically significant anhedonia.


Asunto(s)
Trastorno Depresivo Mayor , Dopamina , Humanos , Racloprida , Dopamina/metabolismo , Anhedonia , Tomografía de Emisión de Positrones , Imagen por Resonancia Magnética
10.
J Pediatr Orthop ; 32(7): e47-52, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22955544

RESUMEN

Congenital talipes equinovarus (clubfoot) is a complex deformity of the lower extremity and foot occurring in 1/1000 live births. Regardless of treatment, whether conservative or surgical, clubfoot has a stubborn tendency to relapse, thus requiring postcorrection bracing. However, to date, there are no investigations specifically focused on clubfoot bracing from a bioengineering perspective. This study applied engineering principles to clubfoot bracing through construction of a surrogate biomodel. The surrogate was developed to represent an average 5-year-old human subject capable of biomechanical characteristics including joint articulation and kinematics. The components include skeleton, articulating joints, muscle-tendon systems, and ligaments. A protocol was developed to measure muscle-tendon tension in resting and braced positions of the surrogate. Measurement error ranged from 1% to 6% and was considered variance due to brace and investigator. In conclusion, this study shows that surrogate biomodeling is an accurate and repeatable method to investigate clubfoot bracing. The methodology is an effective means to evaluate wide ranging brace options and can be used to assist in future brace development and the tuning of brace parameters. Such patient-specific brace tuning may also lead to advanced braces that increase compliance.


Asunto(s)
Bioingeniería/métodos , Tirantes , Pie Equinovaro/rehabilitación , Modelos Anatómicos , Fenómenos Biomecánicos , Preescolar , Humanos , Prevención Secundaria
11.
Med Sci Sports Exerc ; 54(10): 1771-1781, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35700436

RESUMEN

PURPOSE: Greater articular cartilage T1ρ magnetic resonance imaging relaxation times indicate less proteoglycan density and are linked to posttraumatic osteoarthritis development after anterior cruciate ligament reconstruction (ACLR). Although changes in T1ρ relaxation times are associated with gait biomechanics, it is unclear if excessive or insufficient knee joint loading is linked to greater T1ρ relaxation times 12 months post-ACLR. The purpose of this study was to compare external knee adduction (KAM) and flexion (KFM) moments in individuals after ACLR with high versus low tibiofemoral T1ρ relaxation profiles and uninjured controls. METHODS: Gait biomechanics were collected in 26 uninjured controls (50% females; age, 22 ± 4 yr; body mass index, 23.9 ± 2.8 kg·m -2 ) and 26 individuals after ACLR (50% females; age, 22 ± 4 yr; body mass index, 24.2 ± 3.5 kg·m -2 ) at 6 and 12 months post-ACLR. ACLR-T1ρ High ( n = 9) and ACLR-T1ρ Low ( n = 17) groups were created based on 12-month post-ACLR T1ρ relaxation times using a k-means cluster analysis. Functional analyses of variance were used to compare KAM and KFM. RESULTS: ACLR-T1ρ High exhibited lesser KAM than ACLR-T1ρ Low and uninjured controls 6 months post-ACLR. ACLR-T1ρ Low exhibited greater KAM than uninjured controls 6 and 12 months post-ACLR. KAM increased in ACLR-T1ρ High and decreased in ACLR-T1ρ Low between 6 and 12 months, both groups becoming more similar to uninjured controls. There were scant differences in KFM between ACLR-T1ρ High and ACLR-T1ρ Low 6 or 12 months post-ACLR, but both groups demonstrated lesser KFM compared with uninjured controls. CONCLUSIONS: Associations between worse T1ρ profiles and increases in KAM may be driven by the normalization of KAM in individuals who initially exhibit insufficient KAM 6 months post-ACLR.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Reconstrucción del Ligamento Cruzado Anterior , Cartílago Articular , Osteoartritis de la Rodilla , Adolescente , Adulto , Lesiones del Ligamento Cruzado Anterior/cirugía , Reconstrucción del Ligamento Cruzado Anterior/métodos , Fenómenos Biomecánicos , Femenino , Marcha , Humanos , Cinética , Articulación de la Rodilla , Imagen por Resonancia Magnética/métodos , Masculino , Proteoglicanos , Adulto Joven
12.
Arthritis Care Res (Hoboken) ; 74(7): 1172-1178, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-33460530

RESUMEN

OBJECTIVE: To compare T1ρ relaxation times of the medial and lateral regions of the patella and femoral trochlea at 6 and 12 months following anterior cruciate ligament reconstruction (ACLR) on the ACLR and contralateral extremity. Greater T1ρ relaxation times are associated with a lower proteoglycan density of articular cartilage. METHODS: This study involved 20 individuals (11 males, 9 females; mean ± SD age 22 ± 3.9 years, weight 76.11 ± 13.48 kg, and height 178.32 ± 12.32 cm) who underwent a previous unilateral ACLR using a patellar tendon autograft. Magnetic resonance images from both extremities were acquired at 6 and 12 months post-ACLR. Voxel by voxel T1ρ relaxation times were calculated using a 5-image sequence. The medial and lateral regions of the femoral trochlea and patellar articular cartilage were manually segmented on both extremities. Separate extremity (ACLR and contralateral extremity) by time (6 months and 12 months) analysis of variance tests were performed for each region (P < 0.05). RESULTS: For the medial patella and lateral trochlea, T1ρ relaxation times increased in both extremities between 6 and 12 months post-ACLR (medial patella P = 0.012; lateral trochlea P = 0.043). For the lateral patella, T1ρ relaxation times were significantly greater on the contralateral extremity compared to the ACLR extremity (P = 0.001). The T1ρ relaxation times of the medial trochlea on the ACLR extremity were significantly greater at 6 (P = 0.005) and 12 months (P < 0.001) compared to the contralateral extremity. T1ρ relaxation times of the medial trochlea significantly increased from 6 to 12 months on the ACLR extremity (P = 0.003). CONCLUSION: Changes in T1ρ relaxation times occur within the first 12 months following ACLR in specific regions of the patellofemoral joint on the ACLR and contralateral extremity.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Reconstrucción del Ligamento Cruzado Anterior , Cartílago Articular , Articulación Patelofemoral , Adolescente , Adulto , Lesiones del Ligamento Cruzado Anterior/cirugía , Reconstrucción del Ligamento Cruzado Anterior/métodos , Cartílago Articular/diagnóstico por imagen , Cartílago Articular/cirugía , Femenino , Humanos , Articulación de la Rodilla/cirugía , Imagen por Resonancia Magnética/métodos , Masculino , Articulación Patelofemoral/diagnóstico por imagen , Articulación Patelofemoral/cirugía , Adulto Joven
13.
Cartilage ; 13(1): 19476035211072220, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35098719

RESUMEN

OBJECTIVE: A complex association exists between aberrant gait biomechanics and posttraumatic knee osteoarthritis (PTOA) development. Previous research has primarily focused on the link between peak loading during the loading phase of stance and joint tissue changes following anterior cruciate ligament reconstruction (ACLR). However, the associations between loading and cartilage composition at other portions of stance, including midstance and late stance, is unclear. The objective of this study was to explore associations between vertical ground reaction force (vGRF) at each 1% increment of stance phase and tibiofemoral articular cartilage magnetic resonance imaging (MRI) T1ρ relaxation times following ACLR. DESIGN: Twenty-three individuals (47.82% female, 22.1 ±4.1 years old) with unilateral ACLR participated in a gait assessment and T1ρ MRI collection at 12.25 ± 0.61 months post-ACLR. T1ρ relaxation times were calculated for the articular cartilage of the weightbearing medial and lateral femoral (MFC, LFC) and tibial (MTC, LTC) condyles. Separate bivariate, Pearson product moment correlation coefficients (r) were used to estimate strength of associations between T1ρ MRI relaxation times in the medial and lateral tibiofemoral articular cartilage with vGRF across the entire stance phase. RESULTS: Greater vGRF during midstance (46%-56% of stance phase) was associated with greater T1ρ MRI relaxation times in the MFC (r ranging between 0.43 and 0.46). CONCLUSIONS: Biomechanical gait profiles that include greater vGRF during midstance are associated with MRI estimates of lesser proteoglycan density in the MFC. Inability to unload the ACLR limb during midstance may be linked to joint tissue changes associated with PTOA development.


Asunto(s)
Reconstrucción del Ligamento Cruzado Anterior , Cartílago Articular , Adolescente , Adulto , Reconstrucción del Ligamento Cruzado Anterior/métodos , Cartílago Articular/patología , Femenino , Marcha , Humanos , Articulación de la Rodilla/diagnóstico por imagen , Articulación de la Rodilla/cirugía , Imagen por Resonancia Magnética/métodos , Masculino , Adulto Joven
14.
Molecules ; 16(1): 900-14, 2011 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-21258297

RESUMEN

We developed a screening procedure to identify ligands from a phage display random peptide library that are selective for circulating bone marrow derived cells homing to angiogenic tumors. Panning the library on blood outgrowth endothelial cell suspension in vitro followed by in vivo selection based on homing of bone marrow-bound phage to angiogenic tumors, yielded the peptide QFPPKLTNNSML. Upon intravenous injection phage displaying this peptide homed to Lewis lung carcinoma (LLC) tumors in vivo whereas control phage did not localize to tumor tissue. Phage carrying the QFPPKLTNNSML peptide labeled with 64Cu radionuclide when administered intravenously into a tumor bearing mouse was detected noninvasively with positron emission tomography (PET) around the tumor. These proof-of-principle experiments demonstrate the ability of the QFPPKLTNNSML peptide to deliver payload (radiolabeled phage conjugates) in vivo to sites of ongoing angiogenesis and point to its potential clinical utility in a variety of physiologic and pathologic processes where neovascular growth is a critical component.


Asunto(s)
Bacteriófagos/genética , Neoplasias Experimentales/genética , Péptidos/genética , Secuencia de Aminoácidos , Animales , Ratones , Péptidos/química , Péptidos/aislamiento & purificación
15.
Orthop J Sports Med ; 9(7): 23259671211016424, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34368382

RESUMEN

BACKGROUND: Excessively high joint loading during dynamic movements may negatively influence articular cartilage health and contribute to the development of posttraumatic osteoarthritis after anterior cruciate ligament reconstruction (ACLR). Little is known regarding the link between aberrant jump-landing biomechanics and articular cartilage health after ACLR. PURPOSE/HYPOTHESIS: The purpose of this study was to determine the associations between jump-landing biomechanics and tibiofemoral articular cartilage composition measured using T1ρ magnetic resonance imaging (MRI) relaxation times 12 months postoperatively. We hypothesized that individuals who demonstrate alterations in jump-landing biomechanics, commonly observed after ACLR, would have longer T1ρ MRI relaxation times (longer T1ρ relaxation times associated with less proteoglycan density). STUDY DESIGN: Cross-sectional study; Level of evidence, 3. METHODS: A total of 27 individuals with unilateral ACLR participated in this cross-sectional study. Jump-landing biomechanics (peak vertical ground-reaction force [vGRF], peak internal knee extension moment [KEM], peak internal knee adduction moment [KAM]) and T1ρ MRI were collected 12 months postoperatively. Mean T1ρ relaxation times for the entire weightbearing medial femoral condyle, lateral femoral condyle (global LFC), medial tibial condyle, and lateral tibial condyle (global LTC) were calculated bilaterally. Global regions of interest were further subsectioned into posterior, central, and anterior regions of interest. All T1ρ relaxation times in the ACLR limb were normalized to the uninjured contralateral limb. Linear regressions were used to determine associations between T1ρ relaxation times and biomechanics after accounting for meniscal/chondral injury. RESULTS: Lower ACLR limb KEM was associated with longer T1ρ relaxation times for the global LTC (ΔR 2 = 0.24; P = .02), posterior LTC (ΔR 2 = 0.21; P = .03), and anterior LTC (ΔR 2 = 0.18; P = .04). Greater ACLR limb peak vGRF was associated with longer T1ρ relaxation times for the global LFC (ΔR 2 = 0.20; P = .02) and central LFC (ΔR 2 = 0.15; P = .05). Peak KAM was not associated with T1ρ outcomes. CONCLUSION: At 12 months postoperatively, lower peak KEM and greater peak vGRF during jump landing were related to longer T1ρ relaxation times, suggesting worse articular cartilage composition.

16.
Transl Psychiatry ; 11(1): 33, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33431841

RESUMEN

The social motivation hypothesis of autism posits that autism spectrum disorder (ASD) is characterized by impaired motivation to seek out social experience early in life that interferes with the development of social functioning. This framework suggests that impaired mesolimbic dopamine function underlies compromised responses to social rewards in ASD. Although this hypothesis is supported by functional magnetic resonance imaging (fMRI) studies, no molecular imaging study has evaluated striatal dopamine functioning in response to rewards in ASD. Here, we examined striatal functioning during monetary incentive processing in ASD and controls using simultaneous positron emission tomography (PET) and fMRI. Using a bolus + infusion protocol with the D2/D3 dopamine receptor antagonist [11C]raclopride, voxel-wise binding potential (BPND) was compared between groups (controls = 12, ASD = 10) in the striatum. Striatal clusters showing significant between-group BPND differences were used as seeds in whole-brain fMRI general functional connectivity analyses. Relative to controls, the ASD group demonstrated decreased phasic dopamine release to incentives in the bilateral putamen and left caudate, as well as increased functional connectivity between a PET-derived right putamen seed and the precuneus and insula. Within the ASD group, decreased phasic dopamine release in the putamen was related to poorer theory-of-mind skills. Our findings that ASD is characterized by impaired striatal phasic dopamine release to incentives provide support for the social motivation hypothesis of autism. PET-fMRI may be a suitable tool to evaluate novel ASD therapeutics targeting the striatal dopamine system.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno Autístico/diagnóstico por imagen , Cuerpo Estriado/diagnóstico por imagen , Cuerpo Estriado/metabolismo , Dopamina , Humanos , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Racloprida , Receptores de Dopamina D2/metabolismo
17.
Med Phys ; 36(10): 4389-99, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19928069

RESUMEN

Digital breast tomosynthesis (DBT) is a limited angle computed tomography technique that can distinguish tumors from its overlying breast tissues and has potentials for detection of cancers at a smaller size and earlier stage. Current prototype DBT scanners are based on the regular full-field digital mammography systems and require partial isocentric motion of an x-ray tube over certain angular range to record the projection views. This prolongs the scanning time and, in turn, degrades the imaging quality due to motion blur. To mitigate the above limitations, the concept of a stationary DBT (s-DBT) scanner has been recently proposed based on the newly developed spatially distributed multibeam field emission x-ray (MBFEX) source technique using the carbon nanotube. The purpose of this article is to evaluate the performance of the 25-beam MBFEX source array that has been designed and fabricated for the s-DBT system. The s-DBT system records all the projection images by electronically activating the multiple x-ray beams from different viewing angles without any mechanical motion. The configuration of the MBFEX source is close to the published values from the Siemens Mammomat system. The key issues including the x-ray flux, focal spot size, spatial resolution, scanning time, beam-to-beam consistency, and reliability are evaluated using the standard procedures. In this article, the authors describe the design and performance of a distributed x-ray source array specifically designed for the s-DBT system. They evaluate the emission current, current variation, lifetime, and focal spot sizes of the source array. An emission current of up to 18 mA was obtained at 0.5 x 0.3 mm effective focal spot size. The experimentally measured focal spot sizes are comparable to that of a typical commercial mammography tube without motion blurring. Trade-off between the system spatial resolution, x-ray flux, and scanning time are also discussed. Projection images of a breast phantom were collected using the x-ray source array from 25 different viewing angles without motion. These preliminary results demonstrate the feasibility of the proposed s-DBT scanner. The technology has the potential to increase the resolution and reduce the imaging time for DBT. With the present design of 25 views, they demonstrated experimentally the feasibility of achieving 11 s scanning time at full detector resolution with 0.5 x 0.3 mm source resolution without motion blur. The flexibility in configuration of the x-ray source array will also allow system designers to consider imaging geometries that are difficult to achieve with the conventional single-source rotating approach.


Asunto(s)
Mamografía/instrumentación , Intensificación de Imagen Radiográfica/instrumentación , Tomografía Computarizada por Rayos X/instrumentación , Transductores , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Radiometría , Reproducibilidad de los Resultados , Dispersión de Radiación , Sensibilidad y Especificidad , Rayos X
18.
IEEE Trans Nucl Sci ; 56(5): 2728-2738, 2009 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20711514

RESUMEN

We previously developed a realistic phantom for the cardiac motion for use in medical imaging research. The phantom was based upon a gated magnetic resonance imaging (MRI) cardiac study and using 4D non-uniform rational b-splines (NURBS). Using the gated MRI study as the basis for the cardiac model had its limitations. From the MRI images, the change in the size and geometry of the heart structures could be obtained, but without markers to track the movement of points on or within the myocardium, no explicit time correspondence could be established for the structures. Also, only the inner and outer surfaces of the myocardium could be modeled. We enhance this phantom of the beating heart using 4D tagged MRI data. We utilize NURBS surfaces to analyze the full 3D motion of the heart from the tagged data. From this analysis, time-dependent 3D NURBS surfaces were created for the right (RV) and left ventricles (LV). Models for the atria were developed separately since the tagged data only covered the ventricles. A 4D NURBS surface was fit to the 3D surfaces of the heart creating time-continuous 4D NURBS models. Multiple 4D surfaces were created for the left ventricle (LV) spanning its entire volume. The multiple surfaces for the LV were spline-interpolated about an additional dimension, thickness, creating a 4D NURBS solid model for the LV with the ability to represent the motion of any point within the volume of the LV myocardium at any time during the cardiac cycle. Our analysis of the tagged data was found to produce accurate models for the RV and LV at each time frame. In a comparison with segmented structures from the tagged dataset, LV and RV surface predictions were found to vary by a maximum of 1.5 mm's and 3.4 mm's respectively. The errors can be attributed to the tag spacing in the data (7.97 mm's). The new cardiac model was incorporated into the 4D NURBS-based Cardiac-Torso (NCAT) phantom widely used in imaging research. With its enhanced abilities, the model will provide a useful tool in the study of cardiac imaging and the effects of cardiac motion in medical images.

19.
Med Sci Sports Exerc ; 51(4): 630-639, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30444797

RESUMEN

PURPOSE: Aberrant walking biomechanics after anterior cruciate ligament reconstruction (ACLR) are hypothesized to be associated with deleterious changes in knee cartilage. T1ρ magnetic resonance imaging (MRI) is sensitive to decreased proteoglycan density of cartilage. Our purpose was to determine associations between T1ρ MRI interlimb ratios (ILR) and walking biomechanics 6 months after ACLR. METHODS: Walking biomechanics (peak vertical ground reaction force (vGRF), vGRF loading rate, knee extension moment, knee abduction moment) were extracted from the first 50% of stance phase in 29 individuals with unilateral ACLR. T1ρ MRI ILR (ACLR limb/uninjured limb) was calculated for regions of interest in both medial and lateral femoral (LFC) and medial and lateral tibial condyles. Separate, stepwise linear regressions were used to determine associations between biomechanical outcomes and T1ρ MRI ILR after accounting for walking speed and meniscal/chondral injury (P ≤ 0.05). RESULTS: Lesser peak vGRF in the ACLR limb was associated with greater T1ρ MRI ILR for the LFC (posterior ΔR = 0.14, P = 0.05; central ΔR = 0.15, P = 0.05) and medial femoral condyle (central ΔR = 0.24, P = 0.01). Lesser peak vGRF loading rate in the ACLR limb (ΔR = 0.21, P = 0.02) and the uninjured limb (ΔR = 0.27, P = 0.01) was associated with greater T1ρ MRI ILR for the anterior LFC. Lesser knee abduction moment for the injured limb was associated with greater T1ρ MRI ILR for the anterior LFC (ΔR = 0.16, P = 0.04) as well as the posterior medial tibial condyle (ΔR = 0.13, P = 0.04). CONCLUSION: Associations between outcomes related to lesser mechanical loading during walking and greater T1ρ MRI ILR were found 6 months after ACLR. Although preliminary, our results suggest that underloading of the ACLR limb at 6 months after ACLR may be associated with lesser proteoglycan density in the ACLR limb compared with the uninjured limb.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior/fisiopatología , Lesiones del Ligamento Cruzado Anterior/cirugía , Reconstrucción del Ligamento Cruzado Anterior , Cartílago Articular/diagnóstico por imagen , Marcha/fisiología , Articulación de la Rodilla/diagnóstico por imagen , Lesiones del Ligamento Cruzado Anterior/diagnóstico por imagen , Reconstrucción del Ligamento Cruzado Anterior/métodos , Artroscopía , Fenómenos Biomecánicos , Cartílago Articular/química , Cartílago Articular/fisiopatología , Estudios Transversales , Femenino , Humanos , Articulación de la Rodilla/química , Articulación de la Rodilla/fisiopatología , Imagen por Resonancia Magnética/métodos , Masculino , Osteoartritis de la Rodilla/etiología , Proteoglicanos/análisis , Factores de Riesgo , Adulto Joven
20.
IEEE Trans Med Imaging ; 38(6): 1328-1339, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30507527

RESUMEN

Positron emission tomography (PET) has been substantially used recently. To minimize the potential health risk caused by the tracer radiation inherent to PET scans, it is of great interest to synthesize the high-quality PET image from the low-dose one to reduce the radiation exposure. In this paper, we propose a 3D auto-context-based locality adaptive multi-modality generative adversarial networks model (LA-GANs) to synthesize the high-quality FDG PET image from the low-dose one with the accompanying MRI images that provide anatomical information. Our work has four contributions. First, different from the traditional methods that treat each image modality as an input channel and apply the same kernel to convolve the whole image, we argue that the contributions of different modalities could vary at different image locations, and therefore a unified kernel for a whole image is not optimal. To address this issue, we propose a locality adaptive strategy for multi-modality fusion. Second, we utilize 1 ×1 ×1 kernel to learn this locality adaptive fusion so that the number of additional parameters incurred by our method is kept minimum. Third, the proposed locality adaptive fusion mechanism is learned jointly with the PET image synthesis in a 3D conditional GANs model, which generates high-quality PET images by employing large-sized image patches and hierarchical features. Fourth, we apply the auto-context strategy to our scheme and propose an auto-context LA-GANs model to further refine the quality of synthesized images. Experimental results show that our method outperforms the traditional multi-modality fusion methods used in deep networks, as well as the state-of-the-art PET estimation approaches.


Asunto(s)
Aprendizaje Profundo , Imagenología Tridimensional/métodos , Tomografía de Emisión de Positrones/métodos , Encéfalo/diagnóstico por imagen , Bases de Datos Factuales , Humanos , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Dosis de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA