Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell Rep Med ; 4(2): 100935, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36758547

RESUMEN

Transcription factor programs mediating the immune response to coronavirus disease 2019 (COVID-19) are not fully understood. Capturing active transcription initiation from cis-regulatory elements such as enhancers and promoters by capped small RNA sequencing (csRNA-seq), in contrast to capturing steady-state transcripts by conventional RNA-seq, allows unbiased identification of the underlying transcription factor activity and regulatory pathways. Here, we profile transcription initiation in critically ill COVID-19 patients, identifying transcription factor motifs that correlate with clinical lung injury and disease severity. Unbiased clustering reveals distinct subsets of cis-regulatory elements that delineate the cell type, pathway-specific, and combinatorial transcription factor activity. We find evidence of critical roles of regulatory networks, showing that STAT/BCL6 and E2F/MYB regulatory programs from myeloid cell populations are activated in patients with poor disease outcomes and associated with COVID-19 susceptibility genetic variants. More broadly, we demonstrate how capturing acute, disease-mediated changes in transcription initiation can provide insight into the underlying molecular mechanisms and stratify patient disease severity.


Asunto(s)
COVID-19 , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Regulación de la Expresión Génica , Leucocitos/metabolismo , Unidades de Cuidados Intensivos
2.
bioRxiv ; 2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34462742

RESUMEN

The contribution of transcription factors (TFs) and gene regulatory programs in the immune response to COVID-19 and their relationship to disease outcome is not fully understood. Analysis of genome-wide changes in transcription at both promoter-proximal and distal cis-regulatory DNA elements, collectively termed the 'active cistrome,' offers an unbiased assessment of TF activity identifying key pathways regulated in homeostasis or disease. Here, we profiled the active cistrome from peripheral leukocytes of critically ill COVID-19 patients to identify major regulatory programs and their dynamics during SARS-CoV-2 associated acute respiratory distress syndrome (ARDS). We identified TF motifs that track the severity of COVID- 19 lung injury, disease resolution, and outcome. We used unbiased clustering to reveal distinct cistrome subsets delineating the regulation of pathways, cell types, and the combinatorial activity of TFs. We found critical roles for regulatory networks driven by stimulus and lineage determining TFs, showing that STAT and E2F/MYB regulatory programs targeting myeloid cells are activated in patients with poor disease outcomes and associated with single nucleotide genetic variants implicated in COVID-19 susceptibility. Integration with single-cell RNA-seq found that STAT and E2F/MYB activation converged in specific neutrophils subset found in patients with severe disease. Collectively we demonstrate that cistrome analysis facilitates insight into disease mechanisms and provides an unbiased approach to evaluate global changes in transcription factor activity and stratify patient disease severity.

3.
Trends Cancer ; 5(8): 475-494, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31421905

RESUMEN

Circadian clocks constitute the evolutionary molecular machinery that dictates the temporal regulation of physiology to maintain homeostasis. Disruption of the circadian rhythm plays a key role in tumorigenesis and facilitates the establishment of cancer hallmarks. Conversely, oncogenic processes directly weaken circadian rhythms. Pharmacological modulation of core clock genes is a new approach in cancer therapy. The integration of circadian biology into cancer research offers new options for making cancer treatment more effective, encompassing the prevention, diagnosis, and treatment of this devastating disease. This review highlights the role of the circadian clock in tumorigenesis and cancer hallmarks, and discusses how pharmacological modulation of circadian clock genes can lead to new therapeutic options.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinogénesis/efectos de los fármacos , Relojes Circadianos/efectos de los fármacos , Homeostasis/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacología , Carcinogénesis/genética , Carcinogénesis/patología , Relojes Circadianos/genética , Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/fisiología , Homeostasis/fisiología , Humanos , Neoplasias/genética , Neoplasias/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA