Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Clin Exp Immunol ; 196(2): 167-177, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30968409

RESUMEN

Viruses, when used as vectors for vaccine antigen delivery, can induce strong cellular and humoral responses against target epitopes. Recent work by Hansen et al. describes the use of a cytomegalovirus-vectored vaccine, which is able to generate a stable effector-memory T cell population at the sites of vaccination in rhesus macaques. This vaccine, targeted towards multiple epitopes in simian immunodeficiency virus (SIV), did not induce classical CD8+ T cells. However, non-canonical CD8+ T cell induction occurred via major histocompatibility complex (MHC) class II and MHC-E. The MHC-E-restricted T cells could recognize broad epitopes across the SIV peptides, and conferred protection against viral challenge to 55% of vaccinated macaques. The human homologue, human leucocyte antigen (HLA)-E, is now being targeted as a new avenue for vaccine development. In humans, HLA-E is an unusually oligomorphic class Ib MHC molecule, in comparison to highly polymorphic MHC class Ia. Whereas MHC class Ia presents peptides derived from pathogens to T cells, HLA-E classically binds defined leader peptides from class Ia MHC peptides and down-regulates NK cell cytolytic activity when presented on the cell surface. HLA-E can also restrict non-canonical CD8+ T cells during natural infection with various pathogens, although the extent to which they are involved in pathogen control is mostly unknown. In this review, an overview is provided of HLA-E and its ability to interact with NK cells and non-canonical T cells. Also discussed are the unforeseen beneficial effects of vaccination, including trained immunity of NK cells from bacille Calmette-Guérin (BCG) vaccination, and the broad restriction of non-canonical CD8+ T cells by cytomegalovirus (CMV)-vectored vaccines in pre-clinical trials.


Asunto(s)
Antígenos HLA/inmunología , Interacciones Huésped-Patógeno/inmunología , Vacunas/inmunología , Animales , Humanos
2.
Exp Dermatol ; 17(2): 139-40; discussion 141-60, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18205713

RESUMEN

The pathobiology of vitiligo has been hotly disputed for as long as one remembers, and has been a magnet for endless speculation. Evidently, the different schools of thought--ranging, e.g. from the concept that vitiligo essentially is a free-radical disorder to that of vitiligo being a primary autoimmune disease--imply very different consequences for the best therapeutic strategies that one should adopt. As a more effective therapy for this common, often disfiguring pigmentary disorder is direly needed, we must strive harder to settle the pathogenesis debate definitively--on the basis of sound experimental evidence, rather than by a war of dogmatic theories. Recognizing, however, that it is theories which tend to guide our experimental designs and choice of study parameters, the various pathogenesis theories on the market deserve to be critically, yet unemotionally re-evaluated. This Controversies feature invites you to do so, and to ask yourself: is there something important or worthwhile exploring in other pathogenesis scenarios than those already favoured by you that may help you improve your own study design, next time you have a fresh look at vitiligo? Vitiligo provides a superb model for the study of many fundamental problems in skin biology and pathology. Therefore, even if it later turns out that, as far as your own vitiligo pathogenesis concept is concerned, you have barked-up the wrong tree most of the time, chances are that you shall anyway have generated priceless new insights into skin function along the way.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Calcio/metabolismo , Mutación/genética , Especies Reactivas de Oxígeno/metabolismo , Vitíligo/etiología , Apoptosis/fisiología , Humanos , Melanocitos/inmunología , Melanocitos/metabolismo , Melanocitos/patología , Estrés Oxidativo/fisiología , Linfocitos T Citotóxicos/fisiología , Vitíligo/genética , Vitíligo/metabolismo
4.
EBioMedicine ; 29: 146-154, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29519670

RESUMEN

BACKGROUND: T-cell responses against highly conserved influenza antigens have been previously associated with protection. However, these immune responses are poorly maintained following recovery from influenza infection and are not boosted by inactivated influenza vaccines. We have previously demonstrated the safety and immunogenicity of two viral vectored vaccines, modified vaccinia virus Ankara (MVA) and the chimpanzee adenovirus ChAdOx1 expressing conserved influenza virus antigens, nucleoprotein (NP) and matrix protein-1 (M1). We now report on the safety and long-term immunogenicity of multiple combination regimes of these vaccines in young and older adults. METHODS: We conducted a Phase I open-label, randomized, multi-center study in 49 subjects aged 18-46years and 24 subjects aged 50years or over. Following vaccination, adverse events were recorded and the kinetics of the T cell response determined at multiple time points for up to 18months. FINDINGS: Both vaccines were well tolerated. A two dose heterologous vaccination regimen significantly increased the magnitude of pre-existing T-cell responses to NP and M1 after both doses in young and older adults. The fold-increase and peak immune responses after a single MVA-NP+M1 vaccination was significantly higher compared to ChAdOx1 NP+M1. In a mixed regression model, T-cell responses over 18months were significantly higher following the two dose vaccination regimen of MVA/ChAdOx1 NP+M1. INTERPRETATION: A two dose heterologous vaccination regimen of MVA/ChAdOx1 NP+M1 was safe and immunogenic in young and older adults, offering a promising vaccination strategy for inducing long-term broadly cross-reactive protection against influenza A. FUNDING SOURCE: Medical Research Council UK, NIHR BMRC Oxford.

5.
Oncogene ; 25(10): 1532-42, 2006 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-16278680

RESUMEN

Expression microarray analysis identified CITED1 among a group of genes specifically upregulated in the pubertal mouse mammary gland. At puberty, CITED1 localizes to the luminal epithelial cell population of the mammary ducts and the body cells of the terminal end buds. Generation of CITED1 gene knockout mice showed that homozygous null mutants exhibit retarded mammary ductal growth at puberty and, in addition, dilated ductal structures with a lack of spatial restriction of the subtending branches. Analysis of CITED1 homozygous null and heterozygous null mammary gland gene expression using microarrays suggested that the mammary-specific phenotype seen in the homozygous null females is due to a disturbance in the transcription of a number of key mediators of pubertal ductal morphogenesis. These include estrogen and TGFbeta responsive genes, such as the EGFR/ErbB2 ligand, amphiregulin, whose transcription we suggest is directly or indirectly regulated by CITED1.


Asunto(s)
Homocigoto , Glándulas Mamarias Animales/anomalías , Glándulas Mamarias Animales/crecimiento & desarrollo , Morfogénesis/genética , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Maduración Sexual/genética , Transactivadores/deficiencia , Transactivadores/genética , Animales , Proteínas Reguladoras de la Apoptosis , Femenino , Perfilación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis por Micromatrices , Proteínas Nucleares/fisiología , Transactivadores/fisiología
6.
9.
Mucosal Immunol ; 1(5): 372-81, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19079201

RESUMEN

Immune privilege is a concept that has come of age. Where previously it was considered to be a passive phenomenon restricted to certain specialized tissues, it is now viewed as comprising several mechanisms, both active and passive, shared in many aspects with emerging notions of the mechanisms of peripheral tolerance. The relative degrees of immune privilege vary from tissue to tissue depending on the number and strength of each of the mechanisms contained in that tissue. Immune privilege can be generated in non-privileged sites such as the skin and allografts, and is a property of the tissue itself. We therefore propose that, in addition to canonical central and peripheral tolerance mechanisms, there is a third route whereby the organism promotes self-antigen non-reactivity centered on the specific properties of each tissue and varying accordingly (relative degrees of immune privilege). This third mechanism of inducing immunological tolerance, as it is a local tissue phenomenon, might have particular therapeutic significance, for instance in devising strategies for induction of immunity to tumors by disrupting immune privilege or in preventing graft rejection by promoting immune privilege.


Asunto(s)
Inmunidad/inmunología , Animales , Antígenos/inmunología , Movimiento Celular/inmunología , Humanos , Tolerancia Inmunológica/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA