Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Opt Express ; 31(18): 29730-29743, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37710767

RESUMEN

The advent of near-infrared femtosecond pulse laser has enabled the highly-resolved manufacturing of micro/nano structures in various materials including glass. In this paper, we make use of an automated femtosecond laser system, so-called Femtoprint, to design a monolithic self-instrumented mechanism that we use for in-built strain sensing. To that aim, a flexible structure is designed and produced from a silica planar substrate. It has a flexural joint in which an optical waveguide and a Bragg grating have been directly inscribed using femtosecond pulse laser. The latter provides a non-destructive and non-intrusive measurement tool. The axial strain sensitivity of the in-built Bragg grating has been experimentally determined to be 1.22 pm/µ ϵ, while its temperature sensitivity is 10.51 pm/°C. The demonstration of such instrumented glass flexible mechanisms paves the way towards a new class of highly integrated sensors suitable for applications at the microscale or in harsh environments.

2.
Sensors (Basel) ; 23(19)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37836848

RESUMEN

Fused silica glass is a material with outstanding mechanical, thermal and optical properties. Being a brittle material, it is challenging to shape. In the last decade, the manufacturing of monolithic flexible mechanisms in fused silica has evolved with the femtosecond-laser-assisted etching process. However, instrumenting those structures is demanding. To address this obstacle, this article proposes to inscribe a Bragg Grating sensor inside a flexure and interface it with an optical fibre to record the strain using a spectrum analyser. The strain sensitivity of this Bragg Grating sensor is characterized at 1.2 pm/µÏµ (1 µÏµ = 1 microstrain). Among other applications, deformation sensing can be used to record a force. Its use as a micro-force sensor is estimated. The sensor resolution is limited by our recording equipment to 30 µN over a measurement range above 10 mN. This technology can offer opportunities for surgery applications or others where precision and stability in harsh environments are required.

3.
Soft Matter ; 16(3): 754-763, 2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31830189

RESUMEN

We propose a new 3D-printed capillary gripper equipped with a textured surface for motion-free release. The gripper classically picks up micro-objects thanks to the capillary forces induced by a liquid bridge. Micro-objects are released by decreasing the volume of this bridge through evaporation. The latter can be either natural or speeded up by a heating source (an IR laser or the Joule effect). The volume reduction changes the conformity of the contact between the gripper and the object. We analyze the gripper performance and the capillary force generated, and then we rationalize the release mechanism by defining the concept of contact conformity in the context of capillary forces.

4.
Langmuir ; 35(37): 11979-11985, 2019 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-31497966

RESUMEN

In this work, a systematic experimental study of the rupture of an axially symmetric liquid bridge between a cone and a plane was performed, with focus on the volume distribution after break up. A model based on the Young-Laplace equation is presented, and its solutions are compared to experimental data. Cones and conical cavities with different aperture angles were used in our experiments. We found that this aperture influences the potential pinning of the contact line, the meniscus shape, and therefore the liquid transfer. For half aperture angles α < 70°, where no pinning was observed, the liquid bridge slips off from the cone and almost no transfer to the cone is observed. However, at α > 70°, contact line pinning on the cone induces a net liquid transfer to the cone at rupture. In the case of conical cavities, a maximum of liquid transfer is observed for at α = 110°. The distance at which the rupture of the liquid bridge occurs is also discussed. The model can fairly predict the transfer ratio and the rupture height of the liquid bridge.

5.
Soft Matter ; 15(19): 3999-4007, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31032506

RESUMEN

This paper reports an experimental and theoretical investigation of a cantilever beam in contact with an underlying substrate, in the presence of an intervening liquid bridge. The beam is deflected in response to the adhesive capillary forces generated by the liquid. Three main regimes of contact are observed, similarly to other elastocapillary systems already reported in the literature. We measured both the position of the liquid meniscus and the force at the beam clamp in the direction normal to the substrate, as functions of the distance between the beam clamp and the substrate. The resulting force-displacement curve is not monotonic and it exhibits hysteresis in the second regime that we could attribute to solid-solid friction at the beam tip. In the third regime, the adhesive force measured at the clamp strongly increases as the beam approaches the substrate. A 2-dimensional beam model is proposed to rationalize these measurements. This model involves several non-linearities due to geometrical constraints, and its solution with a minimum of iterations is not trivial. The model correctly reproduces the force-displacement curve under two conditions: friction is considered in the second regime, and the reaction force applied by the substrate on the beam is distributed in the third regime. These results are discussed in the context of the adhesion of setal tips involved in the terrestrial locomotion of beetles.

6.
Anesthesiology ; 127(3): 413-422, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28692467

RESUMEN

BACKGROUND: Preoperative administration of the antifibrinolytic agent tranexamic acid reduces bleeding in patients undergoing hip arthroplasty. Increased fibrinolytic activity is maintained throughout the first day postoperation. The objective of the study was to determine whether additional perioperative administration of tranexamic acid would further reduce blood loss. METHODS: This prospective, double-blind, parallel-arm, randomized, superiority study was conducted in 168 patients undergoing unilateral primary hip arthroplasty. Patients received a preoperative intravenous bolus of 1 g of tranexamic acid followed by a continuous infusion of either tranexamic acid 1 g (bolus-plus-infusion group) or placebo (bolus group) for 8 h. The primary outcome was calculated perioperative blood loss up to day 5. Erythrocyte transfusion was implemented according to a restrictive transfusion trigger strategy. RESULTS: The mean perioperative blood loss was 919 ± 338 ml in the bolus-plus-infusion group (84 patients analyzed) and 888 ± 366 ml in the bolus group (83 patients analyzed); mean difference, 30 ml (95% CI, -77 to 137; P = 0.58). Within 6 weeks postsurgery, three patients in each group (3.6%) underwent erythrocyte transfusion and two patients in the bolus group experienced distal deep-vein thrombosis. A meta-analysis combining data from this study with those of five other trials showed no incremental efficacy of additional perioperative administration of tranexamic acid. CONCLUSIONS: A preoperative bolus of tranexamic acid, associated with a restrictive transfusion trigger strategy, resulted in low erythrocyte transfusion rates in patients undergoing hip arthroplasty. Supplementary perioperative administration of tranexamic acid did not achieve any further reduction in blood loss.


Asunto(s)
Antifibrinolíticos/uso terapéutico , Artroplastia de Reemplazo de Cadera , Pérdida de Sangre Quirúrgica/estadística & datos numéricos , Atención Perioperativa/métodos , Ácido Tranexámico/uso terapéutico , Administración Intravenosa , Anciano , Antifibrinolíticos/administración & dosificación , Pérdida de Sangre Quirúrgica/prevención & control , Método Doble Ciego , Transfusión de Eritrocitos/estadística & datos numéricos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Ácido Tranexámico/administración & dosificación
7.
Soft Matter ; 13(2): 304-327, 2017 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-27905611

RESUMEN

Surface tension-driven self-alignment is a passive and highly-accurate positioning mechanism that can significantly simplify and enhance the construction of advanced microsystems. After years of research, demonstrations and developments, the surface engineering and manufacturing technology enabling capillary self-alignment has achieved a degree of maturity conducive to a successful transfer to industrial practice. In view of this transition, a broad and accessible review of the physics, material science and applications of capillary self-alignment is presented. Statics and dynamics of the self-aligning action of deformed liquid bridges are explained through simple models and experiments, and all fundamental aspects of surface patterning and conditioning, of choice, deposition and confinement of liquids, and of component feeding and interconnection to substrates are illustrated through relevant applications in micro- and nanotechnology. A final outline addresses remaining challenges and additional extensions envisioned to further spread the use and fully exploit the potential of the technique.

8.
Ann Occup Hyg ; 59(1): 41-51, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25381441

RESUMEN

A campaign to measure exposure to hexavalent chromium compounds was carried out in France by the seven CARSAT chemistry laboratories, CRAMIF laboratory, and INRS over the 2010-2013 period. The survey included 99 companies involved in various activity sectors. The inhalable fraction of airborne particles was sampled, and exposure levels were determined using ion chromatography analysis combined with post-column derivatization and UV detection. The quality of the measurement results was guaranteed by an inter-laboratory comparison system involving all the laboratories participating in this study. Exposure levels frequently exceeded the French occupational exposure limit value (OELV) of 1 µg m(-3), in activities such as thermal metallization and manufacturing and application of paint in the aeronautics sector. The results also reveal a general trend for a greater proportion of soluble Chromium VI (Cr VI) compounds compared with insoluble compounds. Qualitative and quantitative information relating to the presence of other metallic compounds in the air of workplaces is also provided, for example for Cr III, Ni, Fe, etc. The sampling strategy used and the measurement method are easy to implement, making it possible to check occupational exposure with a view to comparing it to an 8 h-OELV of 1 µg m(-3).


Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Cromo/análisis , Monitoreo del Ambiente/métodos , Exposición Profesional/análisis , Carcinógenos/análisis , Monitoreo del Ambiente/instrumentación , Francia , Humanos , Exposición por Inhalación/análisis , Industria Manufacturera , Concentración Máxima Admisible , Salud Laboral , Pintura , Valores Limites del Umbral , Lugar de Trabajo
9.
Langmuir ; 30(43): 13092-102, 2014 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-25299338

RESUMEN

We present an experimental study of the complete in-plane dynamics of capillary self-alignment. The two translational (shift) and single rotational (twist) in-plane modes of square millimetric transparent dies bridged to shape-matching receptor sites through a liquid meniscus were selectively excited by preset initial offsets. The entire self-alignment dynamics was simultaneously monitored over the three in-plane degrees of freedom by high-speed optical tracking of the alignment trajectories. The dynamics of the twist mode is shown to qualitatively follow the sequence of dynamic regimes also observed for the shift modes, consisting of initial transient wetting, acceleration toward, and underdamped harmonic oscillations around the equilibrium position. Systematic analysis of alignment trajectories for individually as well as simultaneously excited modes shows that, in the absence of twist offset, the dynamics of the degenerate shift modes are mutually independent. In the presence of twist offset, the three modes conversely evidence coupled dynamics, which is attributed to a synchronization mechanism affected by the wetting of the bounding surfaces. The experimental results, justified by energetic, wetting, and dynamic arguments, provide substantial benchmarks for understanding the full dynamics of the process.

10.
Sci Rep ; 14(1): 9053, 2024 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643255

RESUMEN

The nose of the mammals is responsible for filtering, humidifying, and heating the air before entering the lower respiratory tract. This conditioning avoids, notably, dehydration of the bronchial and alveolar mucosa. However, since this conditioning is not perfect, exercising in cold air can induce lung inflammation, both for human and non-human mammals. This work aims to compare the air conditioning in the noses of various mammals during inspiration. We build our study on computational fluid dynamics simulations of the heat exchanges in the lumen of the upper respiratory tract of these mammals. These simulations show that the efficiency of the air conditioning in the nose during inspiration does not relate only to the mass m of the mammal but also to its maximal running speed v. More precisely, the results allow establishing a scaling law relating the efficiency of air conditioning in the nose of mammals to the ratio v / log 10 ( m ) . The simulations also correlate the resistance to the flow in the nose to the efficiency of this air conditioning. The obtained scaling law allows predicting the air temperature at the top of the trachea during inspiration for nasal-breathing mammals, and thus notably for humans of various ages.


Asunto(s)
Aire Acondicionado , Carrera , Animales , Nariz , Respiración , Mamíferos
11.
Anaesth Crit Care Pain Med ; 43(4): 101387, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710325

RESUMEN

BACKGROUND: Preventive anesthetic impact on the high rates of postoperative neurocognitive disorders in elderly patients is debated. The Prevention of postOperative Cognitive dysfunction by Ketamine (POCK) study aimed to assess the effect of ketamine on this condition. METHODS: This is a multicenter, randomized, double-blind, interventional study. Patients ≥60 years undergoing major orthopedic surgery were randomly assigned in a 1:1 ratio to receive preoperative ketamine 0.5 mg/kg as an intravenous bolus (n = 152) or placebo (n = 149) in random blocks stratified according to the study site, preoperative cognitive status and age. The primary outcome was the proportion of objective delayed neurocognitive recovery (dNR) defined as a decline of one or more neuropsychological assessment standard deviations on postoperative day 7. Secondary outcomes included a three-month incidence of objective postoperative neurocognitive disorder (POND), as well as delirium, anxiety, and symptoms of depression seven days and three months after surgery. RESULTS: Among 301 patients included, 292 (97%) completed the trial. Objective dNR occurred in 50 (38.8%) patients in the ketamine group and 54 (40.9%) patients in the placebo group (OR [95% CI] 0.92 [0.56; 1.51], p = 0.73) on postoperative day 7. Incidence of objective POND three months after surgery did not differ significantly between the two groups nor did incidence of delirium, anxiety, apathy, and fatigue. Symptoms of depression were less frequent in the ketamine group three months after surgery (OR [95% CI] 0.34 [0.13-0.86]). CONCLUSIONS: A single preoperative bolus of intravenous ketamine does not prevent the occurrence of dNR or POND in elderly patients scheduled for major orthopedic surgery. (Clinicaltrials.gov NCT02892916).

12.
Sensors (Basel) ; 13(5): 5857-69, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23653053

RESUMEN

This paper reports our work on developing a surface tension actuated micro-robotic platform supported by three bubbles (liquid environment) or droplets (gaseous environment). The actuation principle relies on the force developed by surface tension below a millimeter, which benefits from scaling laws, and is used to actuate this new type of compliant robot. By separately controlling the pressure inside each bubble, three degrees of freedom can be actuated. We investigated three sensing solutions to measure the platform attitude in real-time (z-position of each droplet, leading to the knowledge of the z position and Θx and Θy tilts of the platform). The comparison between optical, resistive, and capacitive measurement principles is hereafter reported. The optical technique uses SFH-9201 components. The resistive technique involves measuring the electrical resistance of a path flowing through two droplets and the platform. This innovative technique for sensing table position combines three pairs of resistances, from which the resistance in each drop can be deduced, thus determining the platform position. The third solution is a more usual high frequency (~200 MHz) capacitive measurement. The resistive method has been proven reliable and is simple to implement. This work opens perspectives toward an interesting sensing solution for micro-robotic platforms.

13.
Int J Nanomedicine ; 18: 1085-1106, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36883068

RESUMEN

Introduction: This work aimed to develop chitosan-coated cubosomal nanoparticles intended for nose-to-brain delivery of paliperidone palmitate. They were compared with standard and cationic cubosomal nanoparticles. This comparison relies on numerous classical in vitro tests and powder deposition within a 3D-printed nasal cast. Methods: Cubosomal nanoparticles were prepared by a Bottom-up method followed by a spray drying process. We evaluated their particle size, polydispersity index, zeta-potential, encapsulation efficiency, drug loading, mucoaffinity properties and morphology. The RPMI 2650 cell line was used to assess the cytotoxicity and cellular permeation. An in vitro deposition test within a nasal cast completed these measurements. Results: The selected chitosan-coated cubosomal nanoparticles loaded with paliperidone palmitate had a size of 305.7 ± 22.54 nm, their polydispersity index was 0.166 ± 0.022 and their zeta potential was +42.4 ± 0.2 mV. This formulation had a drug loading of 70% and an encapsulation efficiency of 99.7 ± 0.1%. Its affinity with mucins was characterized by a ΔZP of 20.93 ± 0.31. Its apparent permeability coefficient thought the RPMI 2650 cell line was 3.00E-05 ± 0.24E-05 cm/s. After instillation in a 3D-printed nasal cast, the fraction of the injected powder deposited in the olfactory region reached 51.47 ± 9.30% in the right nostril and 41.20 ± 4.59% in the left nostril, respectively. Conclusion: The chitosan coated cubosomal formulation seems to be the most promising formulation for nose-to-brain delivery. Indeed, it has a high mucoaffinity and a significantly higher apparent permeability coefficient than the two other formulations. Finally, it reaches well the olfactory region.


Asunto(s)
Quitosano , Palmitato de Paliperidona , Polvos , Nariz , Encéfalo
14.
Pharmaceutics ; 15(12)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38140002

RESUMEN

Nose-to-brain delivery is a promising way to improve the treatment of central nervous system disorders, as it allows the bypassing of the blood-brain barrier. However, it is still largely unknown how the anatomy of the nose can influence the treatment outcome. In this work, we used 3D printing to produce nasal replicas based on 11 different CT scans presenting various anatomical features. Then, for each anatomy and using the Design of Experiments methodology, we characterised the amount of a powder deposited in the olfactory region of the replica as a function of multiple parameters (choice of the nostril, device, orientation angle, and the presence or not of a concomitant inspiration flow). We found that, for each anatomy, the maximum amount of powder that can be deposited in the olfactory region is directly proportional to the total area of this region. More precisely, the results show that, whatever the instillation strategy, if the total area of the olfactory region is below 1500 mm2, no more than 25% of an instilled powder can reach this region. On the other hand, if the total area of the olfactory region is above 3000 mm2, the deposition efficiency reaches 50% with the optimal choice of parameters, whatever the other anatomical characteristics of the nasal cavity. Finally, if the relative difference between the areas of the two sides of the internal nasal valve is larger than 20%, it becomes important to carefully choose the side of instillation. This work, by predicting the amount of powder reaching the olfactory region, provides a tool to evaluate the adequacy of nose-to-brain treatment for a given patient. While the conclusions should be confirmed via in vivo studies, it is a first step towards personalised treatment of neurological pathologies.

15.
Saf Health Work ; 14(2): 163-173, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37389309

RESUMEN

In many industrial sectors, workers are exposed to manufactured or unintentionally emitted airborne nanoparticles (NPs). To develop prevention and enhance knowledge surrounding exposure, it has become crucial to achieve a consensus on how to assess exposure to airborne NPs by inhalation in the workplace. Here, we review the literature presenting recommendations on assessing occupational exposure to NPs. The 23 distinct strategies retained were analyzed in terms of the following points: target NPs, objectives, steps, "measurement strategy" (instruments, physicochemical analysis, and data processing), "contextual information" presented, and "work activity" analysis. The robustness (consistency of information) and practical aspects (detailed methodology) of each strategy were estimated. The objectives and methodological steps varied, as did the measurement techniques. Strategies were essentially based on NPs measurement, but improvements could be made to better account for "contextual information" and "work activity". Based on this review, recommendations for an operational strategy were formulated, integrating the work activity with the measurement to provide a more complete assessment of situations leading to airborne NP exposure. These recommendations can be used with the objective of producing homogeneous exposure data for epidemiological purposes and to help improve prevention strategies.

16.
Micromachines (Basel) ; 13(8)2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36014245

RESUMEN

Capillary forces are shown to be extremely effective for micro-assembly and pick-and-place processes, especially for their ability to self-align the handled objects. However, in today's machines, micro-objects are submitted to high loads, such as compressions for the electrical testing of the micro-components, or inertial forces coming from the high accelerations of the machines. There, capillary grippers may show some limits. These issues, as well as the difficulty to perform precise visual inspections (due to the tilt of the handled micro-object that can occur after a perturbation, such as the displacement of the gripper), can all be solved by temporarily removing the liquid meniscus. Therefore, we present a novel volume-tuning capillary gripper that provides a solution to these limitations without adding additional significant complexities or changes to the existing pick-and-place machines. A multi-scale prototype was dimensioned and produced by using fast prototyping methods, such as a femtosecond laser-assisted chemical etching process for fused silica. Models bringing a deeper understanding of the subsystems are presented. The proof of concept was extensively tested. Its picking capabilities and enhancements of the handling capabilities during horizontal motions, as well as the repeatability of the tuning of the volume of liquid, are presented.

17.
Front Med Technol ; 4: 924501, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35832236

RESUMEN

Nose-to-brain delivery is a promising way to reach the central nervous system with therapeutic drugs. However, the location of the olfactory region at the top of the nasal cavity complexifies this route of administration. In this study, we used a 3D-printed replica of a nasal cavity (a so-called "nasal cast") to reproduce in vitro the deposition of a solid powder. We considered two different delivery devices: a unidirectional device generating a classical spray and a bidirectional device that relies on the user expiration. A new artificial mucus also coated the replica. Five parameters were varied to measure their influence on the powder deposition pattern in the olfactory region of the cast: the administration device, the instillation angle and side, the presence of a septum perforation, and the flow rate of possible concomitant inspiration. We found that the unidirectional powder device is more effective in targeting the olfactory zone than the bi-directional device. Also, aiming the spray nozzle directly at the olfactory area is more effective than targeting the center of the nasal valve. Moreover, the choice of the nostril and the presence of a perforation in the septum also significantly influence the olfactory deposition. On the contrary, the inspiratory flow has only a minor effect on the powder outcome. By selecting the more efficient administration device and parameters, 44% of the powder can reach the olfactory region of the nasal cast.

18.
Sci Rep ; 12(1): 16027, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36163481

RESUMEN

Magnetocapillary interactions between particles allow to self-assemble floating crystals along liquid interfaces. For a fixed number of particles, different states possessing different symmetrical features, known as metastable states, coexist. In this paper, we demonstrate how to trigger the transition from one state to another, either by rearranging the crystal, or by controlling its growth. First, we show that externally controlled magnetic fields can squeeze the entire crystal to induce structural modifications, that upon relaxation can lead to a modified state. Second, we propose localized laser-induced thermocapillary flows that can be used to guide new particles towards an existing crystal in a desired direction, thus favoring a particular resulting state. The control of the formation of metastable states is a key ingredient to functionalize such assemblies, paving the way to self-assembled microrobots.

19.
Int J Pharm ; 626: 122118, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36029992

RESUMEN

Validating numerical models against experimental models of nasal spray deposition is challenging since many aspects must be considered. That being said, it is a critical step in the product development process of nasal spray devices. This work presents the validation process of a nasal deposition model, which demonstrates a high degree of consistency of the numerical model with experimental data when the nasal cavity is segmented into two regions but not into three. Furthermore, by modelling the flow as stationary, the computational cost is drastically reduced while maintaining quality of particle deposition results. Thanks to this reduction, a sensitivity analysis of the numerical model could be performed, consisting of 96 simulations. The objective was to quantify the impact of four inputs: the spray half cone angle, mean spray exit velocity, breakup length from the nozzle exit and the diameter of the nozzle spray device, on the three quantities of interest: the percentage of the accumulated number of particles deposited on the anterior, middle and posterior sections of the nasal cavity. The results of the sensitivity analysis demonstrated that the deposition on anterior and middle sections are sensitive to injection angle and breakup length, and the deposition on posterior section is only, but highly, sensitive to the injection velocity.


Asunto(s)
Cavidad Nasal , Rociadores Nasales , Administración Intranasal , Aerosoles , Simulación por Computador , Nariz , Tamaño de la Partícula
20.
Front Robot AI ; 8: 768236, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869616

RESUMEN

The rise of soft robotics opens new opportunities in endoscopy and minimally invasive surgery. Pneumatic catheters offer a promising alternative to conventional steerable catheters for safe navigation through the natural pathways without tissue injury. In this work, we present an optimized 6 mm diameter two-degree-of-freedom pneumatic actuator, able to bend in every direction and incorporating a 1 mm working channel. A versatile vacuum centrifugal overmolding method capable of producing small geometries with a variety of silicones is described, and meter-long actuators are extruded industrially. An improved method for fiber reinforcement is also presented. The actuator achieves bending more than 180° and curvatures of up to 0.1 mm-1. The exerted force remains below 100 mN, and with no rigid parts in the design, it limits the risks of damage on surrounding tissues. The response time of the actuator is below 300 ms and therefore not limited for medical applications. The working space and multi-channel actuation are also experimentally characterized. The focus is on the study of the influence of material stiffness on mechanical performances. As a rule, the softer the material, the better the energy conversion, and the stiffer the material, the larger the force developed at a given curvature. Based on the actuator, a 90 cm long steerable catheter demonstrator carrying an optical fiber is developed, and its potential for endoscopy is demonstrated in a bronchial tree phantom. In conclusion, this work contributes to the development of a toolbox of soft robotic solutions for MIS and endoscopic applications, by validating and characterizing a promising design, describing versatile and scalable fabrication methods, allowing for a better understanding of the influence of material stiffness on the actuator capabilities, and demonstrating the usability of the solution in a potential use-case.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA