Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 97(10): e0020523, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37728614

RESUMEN

IMPORTANCE: A common hypothesis holds that bats (order Chiroptera) are outstanding reservoirs for zoonotic viruses because of a special antiviral interferon (IFN) system. However, functional studies about key components of the bat IFN system are rare. RIG-I is a cellular sensor for viral RNA signatures that activates the antiviral signaling chain to induce IFN. We cloned and functionally characterized RIG-I genes from two species of the suborders Yangochiroptera and Yinpterochiroptera. The bat RIG-Is were conserved in their sequence and domain organization, and similar to human RIG-I in (i) mediating virus- and IFN-activated gene expression, (ii) antiviral signaling, (iii) temperature dependence, and (iv) recognition of RNA ligands. Moreover, RIG-I of Rousettus aegyptiacus (suborder Yinpterochiroptera) and of humans were found to recognize SARS-CoV-2 infection. Thus, members of both bat suborders encode RIG-Is that are comparable to their human counterpart. The ability of bats to harbor zoonotic viruses therefore seems due to other features.


Asunto(s)
Quirópteros , Receptores de Ácido Retinoico , SARS-CoV-2 , Animales , Humanos , Quirópteros/metabolismo , COVID-19 , Receptores Inmunológicos/química , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , SARS-CoV-2/fisiología , Virus , Receptores de Ácido Retinoico/química , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo
2.
J Virol ; 96(15): e0198021, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35852352

RESUMEN

Atypical porcine pestiviruses (APPV; Pestivirus K) are a recently discovered, very divergent species of the genus Pestivirus within the family Flaviviridae. The presence of APPV in piglet-producing farms is associated with the occurrence of so-called "shaking piglets," suffering from mild to severe congenital tremor type A-II. Previous studies showed that the cellular protein DNAJC14 is an essential cofactor of the NS2 autoprotease of all classical pestiviruses. Consequently, genetically engineered DNAJC14 knockout cell lines were resistant to all tested noncytopathogenic (non-cp) pestiviruses. Surprisingly, we found that the non-cp APPV can replicate in these cells in the absence of DNAJC14, suggesting a divergent mechanism of polyprotein processing. A complete laboratory system for the study of APPV was established to learn more about the replication of this unusual virus. The inactivation of the APPV NS2 autoprotease using reverse genetics resulted in nonreplicative genomes. To further investigate whether a regulation of the NS2-3 cleavage is also existing in APPV, we constructed synthetic viral genomes with deletions and duplications leading to the NS2 independent release of mature NS3. As observed with other pestiviruses, the increase of mature NS3 resulted in elevated viral RNA replication levels and increased protein expression. Our data suggest that APPV exhibit a divergent mechanism for the regulation of the NS2 autoprotease activity most likely utilizing a different cellular protein for the adjustment of replication levels. IMPORTANCE DNAJC14 is an essential cofactor of the pestiviral NS2 autoprotease, limiting replication to tolerable levels as a prerequisite for the noncytopathogenic biotype of pestiviruses. Surprisingly, we found that the atypical porcine pestivirus (APPV) is able to replicate in the absence of DNAJC14. We further investigated the NS2-3 processing of APPV using a molecular clone, monoclonal antibodies, and DNAJC14 knockout cells. We identified two potential active site residues of the NS2 autoprotease and could demonstrate that the release of NS3 by the NS2 autoprotease is essential for APPV replication. Defective interfering genomes and viral genomes with duplicated NS3 sequences that produce mature NS3 independent of the NS2 autoprotease activity showed increased replication and antigen expression. It seems likely that an alternative cellular cofactor controls NS2-3 cleavage and thus replication of APPV. The replication-optimized synthetic APPV genomes might be suitable live vaccine candidates, whose establishment and testing warrant further research.


Asunto(s)
Chaperonas Moleculares , Infecciones por Pestivirus , Pestivirus , Porcinos , Replicación Viral , Animales , Línea Celular , Coenzimas , Genoma Viral/genética , Interacciones Huésped-Patógeno , Chaperonas Moleculares/genética , Pestivirus/clasificación , Pestivirus/enzimología , Pestivirus/crecimiento & desarrollo , Infecciones por Pestivirus/veterinaria , ARN Viral/genética , Porcinos/virología , Enfermedades de los Porcinos/virología , Proteasas Virales/metabolismo , Replicación Viral/genética
3.
Dis Aquat Organ ; 145: 15-20, 2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34080579

RESUMEN

Bufonid herpesvirus 1 (BfHV1) was initially described in 2014 from cases of mortalities and dermatitis in Swiss populations of the common toad Bufo bufo. We identified a closely related herpesvirus strain in a German common toad population affected by an ongoing epidemic of multifocal proliferative to ulcerative skin disease since 2018.


Asunto(s)
Bufo bufo , Herpesviridae , Animales , Alemania/epidemiología , Piel
4.
Emerg Infect Dis ; 23(7): 1176-1179, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28628456

RESUMEN

A novel pestivirus species was discovered in a piglet-producing farm in Austria during virologic examinations of congenital tremor cases. The emergence of this novel pestivirus species, provisionally termed Linda virus, in domestic pigs may have implications for classical swine fever virus surveillance and porcine health management.


Asunto(s)
Infecciones por Pestivirus/veterinaria , Pestivirus/clasificación , Enfermedades de los Porcinos/epidemiología , Enfermedades de los Porcinos/virología , Animales , Austria/epidemiología , Brotes de Enfermedades , Historia del Siglo XXI , Inmunohistoquímica , Pestivirus/genética , Pestivirus/metabolismo , Fenotipo , Filogenia , ARN Viral , Sus scrofa , Porcinos , Enfermedades de los Porcinos/diagnóstico , Enfermedades de los Porcinos/historia
5.
J Virol ; 90(20): 9364-82, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27512056

RESUMEN

UNLABELLED: Pigs are natural hosts for influenza A viruses and play a critical role in influenza epidemiology. However, little is known about their influenza-evoked T-cell response. We performed a thorough analysis of both the local and systemic T-cell response in influenza virus-infected pigs, addressing kinetics and phenotype as well as multifunctionality (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], and interleukin-2 [IL-2]) and cross-reactivity. A total of 31 pigs were intratracheally infected with an H1N2 swine influenza A virus (FLUAVsw) and consecutively euthanized. Lungs, tracheobronchial lymph nodes, and blood were sampled during the first 15 days postinfection (p.i.) and at 6 weeks p.i. Ex vivo flow cytometry of lung lymphocytes revealed an increase in proliferating (Ki-67(+)) CD8(+) T cells with an early effector phenotype (perforin(+) CD27(+)) at day 6 p.i. Low frequencies of influenza virus-specific IFN-γ-producing CD4(+) and CD8(+) T cells could be detected in the lung as early as 4 days p.i. On consecutive days, influenza virus-specific CD4(+) and CD8(+) T cells produced mainly IFN-γ and/or TNF-α, reaching peak frequencies around day 9 p.i., which were up to 30-fold higher in the lung than in tracheobronchial lymph nodes or blood. At 6 weeks p.i., CD4(+) and CD8(+) memory T cells had accumulated in lung tissue. These cells showed diverse cytokine profiles and in vitro reactivity against heterologous influenza virus strains, all of which supports their potential to combat heterologous influenza virus infections in pigs. IMPORTANCE: Pigs not only are a suitable large-animal model for human influenza virus infection and vaccine development but also play a central role in the emergence of new pandemic strains. Although promising candidate universal vaccines are tested in pigs and local T cells are the major correlate of heterologous control, detailed and targeted analyses of T-cell responses at the site of infection are scarce. With the present study, we provide the first detailed characterization of magnitude, kinetics, and phenotype of specific T cells recruited to the lungs of influenza virus-infected pigs, and we could demonstrate multifunctionality, cross-reactivity, and memory formation of these cells. This, and ensuing work in the pig, will strengthen the position of this species as a large-animal model for human influenza virus infection and will immediately benefit vaccine development for improved control of influenza virus infections in pigs.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Reacciones Cruzadas/inmunología , Subtipo H1N2 del Virus de la Influenza A/inmunología , Pulmón/inmunología , Infecciones por Orthomyxoviridae/inmunología , Enfermedades de los Porcinos/inmunología , Animales , Linfocitos T CD4-Positivos/virología , Vacunas contra la Influenza/inmunología , Interferón gamma/inmunología , Interleucina-2/inmunología , Pulmón/virología , Porcinos , Enfermedades de los Porcinos/virología , Factor de Necrosis Tumoral alfa/inmunología
6.
Vet Res ; 48(1): 1, 2017 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-28057061

RESUMEN

In 2013, several Austrian piglet-producing farms recorded outbreaks of action-related repetitive myoclonia in newborn piglets ("shaking piglets"). Malnutrition was seen in numerous piglets as a complication of this tremor syndrome. Overall piglet mortality was increased and the number of weaned piglets per sow decreased by more than 10% due to this outbreak. Histological examination of the CNS of affected piglets revealed moderate hypomyelination of the white substance in cerebellum and spinal cord. We detected a recently discovered pestivirus, termed atypical porcine pestivirus (APPV) in all these cases by RT-PCR. A genomic sequence and seven partial sequences were determined and revealed a 90% identity to the US APPV sequences and 92% identity to German sequences. In confirmation with previous reports, APPV genomes were identified in different body fluids and tissues including the CNS of diseased piglets. APPV could be isolated from a "shaking piglet", which was incapable of consuming colostrum, and passaged on different porcine cells at very low titers. To assess the antibody response a blocking ELISA was developed targeting NS3. APPV specific antibodies were identified in sows and in PCR positive piglets affected by congenital tremor (CT). APPV genomes were detected continuously in piglets that gradually recovered from CT, while the antibody titers decreased over a 12-week interval, pointing towards maternally transmitted antibodies. High viral loads were detectable by qRT-PCR in saliva and semen of infected young adults indicating a persistent infection.


Asunto(s)
Infecciones por Pestivirus/veterinaria , Pestivirus , Enfermedades de los Porcinos/virología , Animales , Animales Recién Nacidos/virología , Anticuerpos Antivirales/inmunología , Austria/epidemiología , Brotes de Enfermedades/veterinaria , Ensayo de Inmunoadsorción Enzimática/veterinaria , Femenino , Masculino , Pestivirus/genética , Infecciones por Pestivirus/congénito , Infecciones por Pestivirus/epidemiología , Infecciones por Pestivirus/patología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/veterinaria , Análisis de Secuencia de ADN/veterinaria , Porcinos , Enfermedades de los Porcinos/congénito , Enfermedades de los Porcinos/epidemiología , Enfermedades de los Porcinos/patología , Carga Viral/veterinaria
7.
J Virol ; 89(8): 4356-71, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25653438

RESUMEN

UNLABELLED: Pestiviruses form a genus in the Flaviviridae family of small enveloped viruses with a positive-sense single-stranded RNA genome. Viral replication in this family requires the activity of a superfamily 2 RNA helicase contained in the C-terminal domain of nonstructural protein 3 (NS3). NS3 features two conserved RecA-like domains (D1 and D2) with ATPase activity, plus a third domain (D3) that is important for unwinding nucleic acid duplexes. We report here the X-ray structure of the pestivirus NS3 helicase domain (pNS3h) at a 2.5-Å resolution. The structure deviates significantly from that of NS3 of other genera in the Flaviviridae family in D3, as it contains two important insertions that result in a narrower nucleic acid binding groove. We also show that mutations in pNS3h that rescue viruses from which the core protein is deleted map to D3, suggesting that this domain may be involved in interactions that facilitate particle assembly. Finally, structural comparisons of the enzyme in different crystalline environments, together with the findings of small-angle X-ray-scattering studies in solution, show that D2 is mobile with respect to the rest of the enzyme, oscillating between closed and open conformations. Binding of a nonhydrolyzable ATP analog locks pNS3h in a conformation that is more compact than the closest apo-form in our crystals. Together, our results provide new insight and bring up new questions about pNS3h function during pestivirus replication. IMPORTANCE: Although pestivirus infections impose an important toll on the livestock industry worldwide, little information is available about the nonstructural proteins essential for viral replication, such as the NS3 helicase. We provide here a comparative structural and functional analysis of pNS3h with respect to its orthologs in other viruses of the same family, the flaviviruses and hepatitis C virus. Our studies reveal differences in the nucleic acid binding groove that could have implications for understanding the unwinding specificity of pNS3h, which is active only on RNA duplexes. We also show that pNS3h has a highly dynamic behavior--a characteristic probably shared with NS3 helicases from all Flaviviridae members--that could be targeted for drug design by using recent algorithms to specifically block molecular motion. Compounds that lock the enzyme in a single conformation or limit its dynamic range of conformations are indeed likely to block its helicase function.


Asunto(s)
Modelos Moleculares , Pestivirus/enzimología , Proteínas no Estructurales Virales/química , Clonación Molecular , Cristalografía por Rayos X , Oligonucleótidos/genética , Conformación Proteica , ARN Helicasas/química , Dispersión del Ángulo Pequeño , Serina Endopeptidasas/química , Especificidad de la Especie
8.
Vet Res ; 47: 17, 2016 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-26754154

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) causes major problems for the swine industry worldwide. Due to Austria's central location in Europe, a large number of animals are transported through the country. However, little is known about current PRRSV strains and epidemiology. We determined full-length genome sequences of two Austrian field isolates (AUT13-883 and AUT14-440) from recent PRRSV outbreaks and of a related German isolate (GER09-613). Phylogenetic analysis revealed that the strains belong to European genotype 1 subtype 1 and form a cluster together with a South Korean strain. Remarkably, AUT14-440 infected the simian cell line MARC-145 without prior adaptation. In addition, this isolate showed exceptional deletions in nonstructural protein 2, in the overlapping region of glycoprotein 3 and 4 and in the 3' untranslated region. Both Austrian isolates caused similar lung lesions but only pigs infected with AUT14-440 developed clear clinical signs of infection. Taken together, the genetic and biological characterization of two novel Austrian PRRSV field isolates revealed similarities to East Asian strains. This stresses the necessity for a more detailed analysis of current PRRSV strains in Europe beyond the determination of short ORF5 and ORF7 sequences.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Secuencia de Aminoácidos , Animales , Austria/epidemiología , Células Cultivadas , Brotes de Enfermedades/veterinaria , Asia Oriental/epidemiología , Femenino , Regulación Viral de la Expresión Génica , Macrófagos Alveolares/fisiología , Macrófagos Alveolares/virología , Masculino , Datos de Secuencia Molecular , Filogenia , Síndrome Respiratorio y de la Reproducción Porcina/epidemiología , Virus del Síndrome Respiratorio y Reproductivo Porcino/clasificación , Virus del Síndrome Respiratorio y Reproductivo Porcino/patogenicidad , Porcinos , Proteínas Virales/genética , Proteínas Virales/metabolismo , Viremia , Virulencia , Esparcimiento de Virus
9.
Retrovirology ; 12: 43, 2015 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-25980759

RESUMEN

BACKGROUND: Mouse mammary tumour virus (MMTV) is a betaretrovirus that infects rodent cells and uses mouse tranferrin receptor 1 (TfR1) for cell entry. Several MMTV strains have been shown to productively infect, in addition to murine cells, various heterologous cell lines including those of human origin, albeit less efficiently than murine cells. Furthermore, there have been reports that the continued passage of MMTV in heterologous cell lines gives rise to novel variants that are able to infect naive non-murine cells with higher efficiency than the parental virus. RESULTS: We show that MMTV(C3H), like other MMTV strains, that had undergone a number of replication cycles in non-murine cells displayed an increased replication kinetic, as compared to parental virus, when applied on naive human cells. Sequence analysis of several replication kinetic variants and the parental virus, together with calculation of the ratio of non-synonymous to synonymous mutations at individual codons, revealed that several regions within the viral genome were under strong positive selection pressure during viral replication in human cells. The mutation responsible, at least in part, for the phenotypic change was subsequently mapped to the segment of env encoding the receptor binding site (F40HGFR44). Introduction of the identified mutation, leading to single amino acid substitution (G42E), into egfp-containing recombinant MMTV virions enhanced their ability to bind to and infect human cells. Interestingly, neither the replication kinetic mutant nor the parental virus required human TfR1 for infection. Knock-out of TFR1 gene from the human genome did not decrease the susceptibility of Hs578T cells to virus infection. Furthermore, the expression of human TfR1, in contrast to mouse TfR1, did not enhance the susceptibility of MMTV-resistant Chinese hamster ovary cells. Thus, human TfR1 is dispensable for infection and another cell surface molecule mediates the MMTV entry into human cells. CONCLUSION: Taken together, our data explain the mechanism enabling MMTV to form 'host-range variants' in non-murine cells that has been known for a long time, the basis of which remained obscure. Our findings may expand our understanding of how viruses gain capability to cross species-specific barriers to infect new hosts.


Asunto(s)
Especificidad del Huésped , Virus del Tumor Mamario del Ratón/fisiología , Proteínas Mutantes/metabolismo , Mutación Missense , Receptores de Transferrina/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus , Sustitución de Aminoácidos , Animales , Línea Celular , Humanos , Proteínas Mutantes/genética , Pase Seriado , Proteínas del Envoltorio Viral/genética , Replicación Viral
10.
J Virol ; 88(1): 82-98, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24131714

RESUMEN

Nonstructural protein 5A (NS5A) of bovine viral diarrhea virus (BVDV) is a hydrophilic phosphoprotein with RNA binding activity and a critical component of the viral replicase. In silico analysis suggests that NS5A encompasses three domains interconnected by two low-complexity sequences (LCSs). While domain I harbors two functional determinants, an N-terminal amphipathic helix important for membrane association, and a Zn-binding site essential for RNA replication, the structure and function of the C-terminal half of NS5A are still ill defined. In this study, we introduced a panel of 10 amino acid deletions covering the C-terminal half of NS5A. In the context of a highly efficient monocistronic replicon, deletions in LCS I and the N-terminal part of domain II, as well as in domain III, were tolerated with regard to RNA replication. When introduced into a bicistronic replicon, only deletions in LCS I and the N-terminal part of domain II were tolerated. In the context of the viral full-length genome, these mutations allowed residual virion morphogenesis. Based on these data, a functional monocistronic BVDV replicon coding for an NS5A variant with an insertion of the fluorescent protein mCherry was constructed. Live cell imaging demonstrated that a fraction of NS5A-mCherry localizes to the surface of lipid droplets. Taken together, this study provides novel insights into the functions of BVDV NS5A. Moreover, we established the first pestiviral replicon expressing fluorescent NS5A-mCherry to directly visualize functional viral replication complexes by live cell imaging.


Asunto(s)
Virus de la Diarrea Viral Bovina/metabolismo , Proteínas no Estructurales Virales/fisiología , Animales , Secuencia de Bases , Bovinos , Células Cultivadas , Cartilla de ADN , Virus de la Diarrea Viral Bovina/fisiología , Electroforesis en Gel de Poliacrilamida , Electroporación , Proteínas no Estructurales Virales/genética
11.
Vet Res ; 46: 54, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-25990845

RESUMEN

In vitro generated monocyte-derived dendritic cells (moDCs) have frequently been used to study the influence of porcine reproductive and respiratory syndrome virus (PRRSV) infection on antigen presenting cells. However, obtained results have often been conflicting in regard to expression of co-stimulatory molecules and interaction with T cells. In this study we performed a detailed phenotypic characterisation of PRRSV-infected moDCs and non-infected moDCs. For CD163 and CD169, which are involved in PRRSV-entry into host cells, our results show that prior to infection porcine moDCs express high levels of CD163 but only very low levels for CD169. Following infection with either PRRSV-1 or PRRSV-2 strains after 24 h, PRRSV-nucleoprotein (N-protein)(+) and N-protein(-) moDCs derived from the same microculture were analyzed for expression of swine leukocyte antigen-DR (SLA-DR) and CD80/86. N-protein(+) moDCs consistently expressed higher levels of SLA-DR and CD80/86 compared to N-protein(-) moDCs. We also investigated the influence of PRRSV-infected moDCs on proliferation and frequency of Foxp3(+) regulatory T cells present within CD4(+) T cells in in vitro co-cultures. Neither CD3-stimulated nor unstimulated CD4(+) T cells showed differences in regard to proliferation and frequency of Foxp3(+) T cells following co-cultivation with either PRRSV-1 or PRRSV-2 infected moDCs. Our results suggest that a more detailed characterisation of PRRSV-infected moDCs will lead to more consistent results across different laboratories and PRRSV strains as indicated by the major differences in SLA-DR and CD80/86 expression between PRRSV-infected and non-infected moDCs present in the same microculture.


Asunto(s)
Factores de Transcripción Forkhead/genética , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Animales , Antígeno B7-1/inmunología , Antígeno B7-1/metabolismo , Antígeno B7-2/inmunología , Antígeno B7-2/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Factores de Transcripción Forkhead/metabolismo , Antígenos de Histocompatibilidad Clase I , Antígenos de Histocompatibilidad Clase II/inmunología , Antígenos de Histocompatibilidad Clase II/metabolismo , Monocitos/metabolismo , Síndrome Respiratorio y de la Reproducción Porcina/virología , Porcinos , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo
12.
J Virol ; 87(21): 11872-83, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23986594

RESUMEN

Classical swine fever virus (CSFV) is a positive-stranded RNA virus belonging to the genus Pestivirus within the Flaviviridae family. Pivotal for processing of a large portion of the viral polyprotein is a serine protease activity within nonstructural protein 3 (NS3) that also harbors helicase and NTPase activities essential for RNA replication. In CSFV-infected cells, NS3 appears as two forms, a fully processed NS3 of 80 kDa and the precursor molecule NS2-3 of 120 kDa. Here we report the identification and mapping of additional autocatalytic intramolecular cleavages. One cleavable peptide bond occurs between Leu1781 and Met1782, giving rise to a helicase subunit of 55 kDa and, depending on the substrate, a NS2-3 fragment of 78 kDa (NS2-3p) or a NS3 protease subunit of 26 kDa (NS3p). In trans-cleavage assays using NS4-5 as a substrate, NS3p acts as a fully functional protease that is able to process the polyprotein. NS3p comprises the minimal essential protease, as deletion of Leu1781 results in inactivation. A second intramolecular cleavage was mapped to the Leu1748/Lys1749 peptide bond that yields a proteolytically inactive NS3 fragment. Deletion of either of the cleavage site residues resulted in a loss of RNA infectivity, indicating the functional importance of amino acid identity at the respective positions. Our data suggest that internal cleavage within the NS3 moiety is a common process that further extends the functional repertoires of the multifunctional NS2-3 or NS3 and represents another level of the complex polyprotein processing of Flaviviridae.


Asunto(s)
Virus de la Fiebre Porcina Clásica/enzimología , Virus de la Fiebre Porcina Clásica/fisiología , Péptido Hidrolasas/metabolismo , ARN Helicasas/metabolismo , Proteínas no Estructurales Virales/metabolismo , Replicación Viral , Animales , Línea Celular , Análisis Mutacional de ADN , Hidrólisis , Procesamiento Proteico-Postraduccional , Serina Endopeptidasas/metabolismo
13.
PLoS Pathog ; 8(3): e1002598, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22457622

RESUMEN

Core protein of Flaviviridae is regarded as essential factor for nucleocapsid formation. Yet, core protein is not encoded by all isolates (GBV- A and GBV- C). Pestiviruses are a genus within the family Flaviviridae that affect cloven-hoofed animals, causing economically important diseases like classical swine fever (CSF) and bovine viral diarrhea (BVD). Recent findings describe the ability of NS3 of classical swine fever virus (CSFV) to compensate for disabling size increase of core protein (Riedel et al., 2010). NS3 is a nonstructural protein possessing protease, helicase and NTPase activity and a key player in virus replication. A role of NS3 in particle morphogenesis has also been described for other members of the Flaviviridae (Patkar et al., 2008; Ma et al., 2008). These findings raise questions about the necessity and function of core protein and the role of NS3 in particle assembly. A reverse genetic system for CSFV was employed to generate poorly growing CSFVs by modification of the core gene. After passaging, rescued viruses had acquired single amino acid substitutions (SAAS) within NS3 helicase subdomain 3. Upon introduction of these SAAS in a nonviable CSFV with deletion of almost the entire core gene (Vp447(Δc)), virus could be rescued. Further characterization of this virus with regard to its physical properties, morphology and behavior in cell culture did not reveal major differences between wildtype (Vp447) and Vp447(Δc). Upon infection of the natural host, Vp447(Δc) was attenuated. Hence we conclude that core protein is not essential for particle assembly of a core-encoding member of the Flaviviridae, but important for its virulence. This raises questions about capsid structure and necessity, the role of NS3 in particle assembly and the function of core protein in general.


Asunto(s)
Virus de la Fiebre Porcina Clásica/fisiología , Peste Porcina Clásica/virología , Proteínas del Núcleo Viral/fisiología , Proteínas no Estructurales Virales/fisiología , Animales , Línea Celular , Peste Porcina Clásica/sangre , Virus de la Fiebre Porcina Clásica/patogenicidad , Modelos Animales de Enfermedad , Interacciones Huésped-Patógeno , Porcinos , Virulencia , Replicación Viral
14.
Viruses ; 16(6)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38932270

RESUMEN

Honey bees (Apis mellifera) play a crucial role in agriculture through their pollination activities. However, they have faced significant health challenges over the past decades that can limit colony performance and even lead to collapse. A primary culprit is the parasitic mite Varroa destructor, known for transmitting harmful bee viruses. Among these viruses is deformed wing virus (DWV), which impacts bee pupae during their development, resulting in either pupal demise or in the emergence of crippled adult bees. In this study, we focused on DWV master variant B. DWV-B prevalence has risen sharply in recent decades and appears to be outcompeting variant A of DWV. We generated a molecular clone of a typical DWV-B strain to compare it with our established DWV-A clone, examining RNA replication, protein expression, and virulence. Initially, we analyzed the genome using RACE-PCR and RT-PCR techniques. Subsequently, we conducted full-genome RT-PCR and inserted the complete viral cDNA into a bacterial plasmid backbone. Phylogenetic comparisons with available full-length sequences were performed, followed by functional analyses using a live bee pupae model. Upon the transfection of in vitro-transcribed RNA, bee pupae exhibited symptoms of DWV infection, with detectable viral protein expression and stable RNA replication observed in subsequent virus passages. The DWV-B clone displayed a lower virulence compared to the DWV-A clone after the transfection of synthetic RNA, as evidenced by a reduced pupal mortality rate of only 20% compared to 80% in the case of DWV-A and a lack of malformations in 50% of the emerging bees. Comparable results were observed in experiments with low infection doses of the passaged virus clones. In these tests, 90% of bees infected with DWV-B showed no clinical symptoms, while 100% of pupae infected with DWV-A died. However, at high infection doses, both DWV-A and DWV-B caused mortality rates exceeding 90%. Taken together, we have generated an authentic virus clone of DWV-B and characterized it in animal experiments.


Asunto(s)
Genoma Viral , Filogenia , Virus ARN , Replicación Viral , Animales , Abejas/virología , Virus ARN/genética , Virus ARN/clasificación , Pupa/virología , Virulencia , Varroidae/virología , ARN Viral/genética
15.
Viruses ; 15(2)2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36851556

RESUMEN

Viruses contribute significantly to the global decline of honey bee populations. One way to limit the impact of such viruses is the introduction of natural antiviral compounds from fungi as a component of honey bee diets. Therefore, we examined the effect of crude organic extracts from seven strains of the fungal genus Talaromyces in honey bee diets under laboratory conditions. The strains were isolated from bee bread prepared by honey bees infected with chronic bee paralysis virus (CBPV). The antiviral effect of the extracts was also quantified in vitro using mammalian cells as a model system. We found that three extracts (from strains B13, B18 and B30) mitigated CBPV infections and increased the survival rate of bees, whereas other extracts had no effect (B11 and B49) or were independently toxic (B69 and B195). Extract B18 inhibited the replication of feline calicivirus and feline coronavirus (FCoV) in mammalian cells, whereas extracts B18 and B195 reduced the infectivity of FCoV by ~90% and 99%, respectively. Our results show that nonpathogenic fungi (and their products in food stores) offer an underexplored source of compounds that promote disease resistance in honey bees.


Asunto(s)
Ascomicetos , Coronavirus Felino , Virus ARN , Talaromyces , Gatos , Abejas , Animales , Antivirales/farmacología , Parálisis , Mamíferos
16.
Viruses ; 15(1)2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36680298

RESUMEN

The emergence of recombinant PRRSV strains has been observed for more than a decade. These recombinant viruses are characterized by a genome that contains genetic material from at least two different parental strains. Due to the advanced sequencing techniques and a growing number of data bank entries, the role of PRRSV recombinants has become increasingly important since they are sometimes associated with clinical outbreaks. Chimeric viruses observed more recently are products of PRRSV wild-type and vaccine strains. Here, we report on three PRRSV-1 isolates from geographically distant farms with differing clinical manifestations. A sequencing and recombination analysis revealed that these strains are crossovers between different wild-type strains and the same modified live virus vaccine strain. Interestingly, the recombination breakpoint of all analyzed isolates appears at the beginning of open reading frame 5 (ORF5). RNA structure predictions indicate a conserved stem loop in close proximity to the recombination hotspot, which is a plausible cause of a polymerase template switch during RNA replication. Further research into the mechanisms of the stem loop is needed to help understand the PRRSV recombination process and the role of MLVs as parental strains.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Animales , Porcinos , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Sistemas de Lectura Abierta , Recombinación Genética , Filogenia
17.
Viruses ; 15(12)2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-38140585

RESUMEN

The deformed wing virus (DWV) belongs to the genus Iflavirus and the family Iflaviridae within the order Picornavirales. It is an important pathogen of the Western honey bee, Apis mellifera, causing major losses among honey bee colonies in association with the ectoparasitic mite Varroa destructor. Although DWV is one of the best-studied insect viruses, the mechanisms of viral replication and polyprotein processing have been poorly studied in the past. We investigated the processing of the protease-polymerase region at the C-terminus of the polyprotein in more detail using recombinant expression, novel serological reagents, and virus clone mutagenesis. Edman degradation of purified maturated polypeptides uncovered the C- and N-termini of the mature 3C-like (3CL) protease and RNA-dependent RNA polymerase (3DL, RdRp), respectively. Autocatalytic processing of the recombinant DWV 3CL protease occurred at P1 Q2118 and P1' G2119 (KPQ/GST) as well as P1 Q2393 and P1' S2394 (HAQ/SPS) cleavage sites. New monoclonal antibodies (Mab) detected the mature 3CL protease with an apparent molecular mass of 32 kDa, mature 3DL with an apparent molecular mass of 55 kDa as well as a dominant 3CDL precursor of 90 kDa in DWV infected honey bee pupae. The observed pattern corresponds well to data obtained via recombinant expression and N-terminal sequencing. Finally, we were able to show that 3CL protease activity and availability of the specific protease cleavage sites are essential for viral replication, protein synthesis, and establishment of infection using our molecular clone of DWV-A.


Asunto(s)
Virus ARN , Varroidae , Abejas , Animales , Virus ARN/genética , Péptido Hidrolasas , Poliproteínas
18.
J Virol ; 85(7): 3607-20, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21270154

RESUMEN

Proteolytic processing of polyproteins is considered a crucial step in the life cycle of most positive-strand RNA viruses. An enhancement of NS2-3 processing has been described as a major difference between the noncytopathogenic (non-CP) and the cytopathogenic (CP) biotypes of pestiviruses. The effects of accelerated versus delayed NS2-3 processing on the maturation of the other nonstructural proteins (NSP) have never been compared. In this study, we analyzed the proteolytic processing of NSP in Classical swine fever virus (CSFV). Key to the investigation was a panel of newly developed monoclonal antibodies (MAbs) that facilitated monitoring of all nonstructural proteins involved in virus replication (NS2, NS3, NS4A, NS5A, and NS5B). Applying these MAbs in Western blotting and radioimmunoprecipitation allowed an unambiguous identification of the mature proteins and precursors in non-CP CSFV-infected cells. Furthermore, the kinetics of processing were determined by pulse-chase analyses for non-CP CSFV, CP CSFV, and a CP CSFV replicon. A slow but constant processing of NS4A/B-5A/B occurred in non-CP CSFV-infected cells, leading to balanced low-level concentrations of mature NSP. In contrast, the turnover of the polyprotein precursors was three times faster in CP CSFV-infected cells and in cells transfected with a CP CSFV replicon, causing a substantial increase of mature NSP concentrations. We conclude that a delayed processing not only of NS3 but further of all NSP represents a hallmark of regulation in non-CP pestiviruses.


Asunto(s)
Virus de la Fiebre Porcina Clásica/genética , Virus de la Fiebre Porcina Clásica/fisiología , Proteínas no Estructurales Virales/biosíntesis , Replicación Viral , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/aislamiento & purificación , Western Blotting , Línea Celular , Femenino , Ratones , Ratones Endogámicos BALB C , Procesamiento Proteico-Postraduccional , Ensayo de Radioinmunoprecipitación , Porcinos , Proteínas no Estructurales Virales/genética
19.
Viruses ; 14(2)2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-35215920

RESUMEN

Linda virus (LindaV) was first identified in a pig farm in Styria, Austria in 2015 and associated with congenital tremor (CT) type A-II in newborn piglets. Since then, only one more LindaV affected farm was retrospectively discovered 10 km away from the initially affected farm. Here, we report the recent outbreak of a novel LindaV strain in a farrow-to-finish farm in the federal state Carinthia, Austria. No connection between this farm and the previously affected farms could be discovered. The outbreak was characterized by severe CT cases in several litters and high preweaning mortality. A herd visit two months after the onset of clinical symptoms followed by a diagnostic workup revealed the presence of several viremic six-week-old nursery pigs. These animals shed large amounts of virus via feces and saliva, implying an important epidemiological role for within- and between-herd virus transmission. The novel LindaV strain was isolated and genetically characterized. The findings underline a low prevalence of LindaV in the Austrian pig population and highlight the threat when introduced into a pig herd. Furthermore, the results urge the need to better understand the routes of persistence and transmission of this enigmatic pestivirus in the pig population.


Asunto(s)
Enfermedades Transmisibles Emergentes/veterinaria , Infecciones por Pestivirus/veterinaria , Pestivirus/aislamiento & purificación , Enfermedades de los Porcinos/virología , Animales , Austria/epidemiología , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/virología , Brotes de Enfermedades , Granjas , Heces/virología , Pestivirus/clasificación , Pestivirus/genética , Pestivirus/fisiología , Infecciones por Pestivirus/epidemiología , Infecciones por Pestivirus/virología , Filogenia , Estudios Retrospectivos , Porcinos , Enfermedades de los Porcinos/epidemiología
20.
J Virol ; 84(21): 11523-31, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20702631

RESUMEN

Pestiviruses are pathogens of cloven-hoofed animals, belonging to the Flaviviridae. The pestiviral particle consists of a lipid membrane containing the three envelope glycoproteins Erns, E1, and E2 and a nucleocapsid of unknown symmetry, which is composed of the Core protein and the viral positive-sense RNA genome. The positively charged pestiviral Core protein consists of 86 to 89 amino acids. To analyze the organization of essential domains, N- and C-terminal truncations, as well as internal deletions, were introduced into the Core coding sequence in the context of an infectious cDNA clone of classical swine fever virus strain Alfort. Amino acids 179 to 180, 194 to 198, and 208 to 212 proved to be of special importance for the generation of progeny virus. The results of transcomplementation of a series of C-terminally truncated Core molecules indicate the importance of Ala255 at the C terminus. The plasticity of Core protein was examined by the construction of concatemeric arrays of Core coding regions and the insertion of up to three yellow fluorescent protein (YFP) genes between two Core genes. Even a Core fusion protein with more than 10-fold-increased molecular mass was integrated into the viral particle and supported the production of infectious progeny virus. The unexpected plasticity of Core protein brings into question the formation of a regular icosahedric particle and supports the idea of a histone-like protein-RNA interaction. All viruses with a duplicated Core gene were unstable and reverted to the wild-type sequence. Interestingly, a nonviable YFP-Core construct was rescued by a mutation within the C-terminal domain of the nonstructural protein NS3.


Asunto(s)
Virus de la Fiebre Porcina Clásica , Proteínas del Núcleo Viral , Secuencia de Aminoácidos , Aminoácidos , Animales , ADN Complementario , Mutación , Porcinos , Proteínas del Núcleo Viral/genética , Virión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA