Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Part Fibre Toxicol ; 20(1): 35, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37641072

RESUMEN

BACKGROUND: Plastic pollution is greatly serious in the ocean and soil. Microplastics (MPs) degraded from plastic has threatened animals and humans health. The accumulation of MPs in the tissues and blood in animals and humans has been found. There is therefore a need to assess the toxicological effects of MPs on the reproductive system. RESULTS: In this study, we explored the effect of polystyrene microplastics (PS-MPs) on premature testicular aging in vitro and in vivo. In vitro, we found that testicular sertoli cells (TM4 cells) was prematurely senescent following PS-MPs treatment by the evaluation of a range of aging marker molecules (such as Sa-ß-gal, p16 and 21). TM4 cells were then employed for in vitro model to study the potential molecular mechanism by which PS-MPs induce the premature senescence of TM4 cells. NF-κB is identified as a key molecule for PS-MPs-induced TM4 cellular senescence. Furthermore, through eliminating reactive oxygen species (ROS), the activation of nuclear factor kappa B (NF-κB) was blocked in PS-MPs-induced senescent TM4 cells, indicating that ROS triggers NF-κB activation. Next, we analyzed the causes of mitochondrial ROS (mtROS) accumulation induced by PS-MPs, and results showed that Ca2+ overload induced the accumulation of mtROS. Further, PS-MPs exposure inhibits mitophagy, leading to the continuous accumulation of senescent cells. In vivo, 8-week-old C57 mice were used as models to assess the effect of PS-MPs on premature testicular aging. The results illustrated that PS-MPs exposure causes premature aging of testicular tissue by testing aging markers. Additionally, PS-MPs led to oxidative stress and inflammatory response in the testicular tissue. CONCLUSION: In short, our experimental results revealed that PS-MPs-caused testicular premature aging is dependent on Ca2+/ROS/NF-κB signaling axis. The current study lays the foundation for further exploration of the effects of microplastics on testicular toxicology.


Asunto(s)
Envejecimiento Prematuro , Humanos , Masculino , Animales , Ratones , Microplásticos/toxicidad , Poliestirenos/toxicidad , Plásticos , FN-kappa B , Especies Reactivas de Oxígeno
2.
Anim Biotechnol ; 34(9): 4978-4988, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37300519

RESUMEN

This experiment was conducted to evaluate the growth performance, growth regulating factors, and liver morphology of chicks hatched from egg-laying breeding hens dietary supplemented with additives (ß-carotene). Hy-line breeding hens were allocated into three groups with three replicates/group. The dietary treatments were as follows: basal diet as a control (Con), basal diet supplemented with 120 (ßc-L) or 240 (ßc-H) mg/kg of ß-carotene diet. After 6 weeks, the eggs were collected and incubated. The hatched chicks were fed the same diet. The results showed that chicks in the ßc-L group increased in body weight at 21 days (p < 0.01). At 42 days, chicks in the ßc-H group showed a significant increase in tibia length (p < 0.05). The liver index increased in the ßc-L and ßc-H groups at 7 days (p < 0.05). Serum HGF (7, 14, 21, and 42 days) and leptin (14 days) were significantly increased in the group supplemented with ßc. Hepatic GHR (14 days), IGF-1R (14 days), and LEPR (21 days) mRNA expression were significantly increased. In addition, there was an increase in PCNA-positive cells in the liver of chicks in the ßc group. In conclusion, the addition of ß-carotene to the diet of laying breeder hens was more advantageous in terms of growth performance and liver development of the offspring.


Asunto(s)
Pollos , beta Caroteno , Animales , Femenino , Pollos/genética , beta Caroteno/farmacología , beta Caroteno/metabolismo , Dieta/veterinaria , Suplementos Dietéticos , Alimentación Animal/análisis , Hígado
3.
Gen Comp Endocrinol ; 325: 114050, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35561788

RESUMEN

Epidermal growth factor (EGF) is an effective cytoprotective peptide. It is the main nutritional factor involved in the development of the intestinal tract. It has many important biological effects on the intestinal mucosa. After binding to epidermal growth factor receptor (EGFR), it initiates a signal transduction cascade to jointly promote the migration, proliferation, and differentiation of various cell types. Heat stress severely affects the intestinal health of livestock and is becoming increasingly prevalent due to the yearly increase in ambient temperature and intestinal diseases. However, the effect of heat stress on the activity and signaling of EGF/EGFR in intestinal cells is still unclear. Therefore, rat intestinal crypt epithelial cell line (IEC6) was used as a model to explore this issue, and the results showed that EGF/EGFR is internalized into IEC6 cells in a time-dependent manner under physiological conditions. However, the activity of EGF/EGFR was altered under heat stress. Furthermore, we explored the effect of heat stress on EGF/EGFR-activated signaling transduction in IEC6 cells, and the results showed that levels of factors involved in EGFR-mediated intracellular signaling (such as EGFR, signal transducers and activators of transcription 3/protein kinase B, and extracellular regulatory kinase 1/2) were downregulated under heat stress. In summary, this study shows that heat stress could damage the biological activity and intracellular signaling of EGF/EGFR. These findings have scientific importance in the field of animal husbandry; and lay the foundation for the further study of the biological activities of EGF/EGFR in the intestine.


Asunto(s)
Factor de Crecimiento Epidérmico , Receptores ErbB , Animales , Factor de Crecimiento Epidérmico/farmacología , Receptores ErbB/metabolismo , Respuesta al Choque Térmico , Mucosa Intestinal/metabolismo , Fosforilación , Ratas , Transducción de Señal
4.
J Cell Physiol ; 234(12): 23388-23397, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31173363

RESUMEN

It is well known that zinc ion (Zn2+ ) can regulate the biological activity of growth hormone (GH). However, until now, the mechanism by which Zn2+ regulates GH biological activity remains unclear. In the current study, we first performed molecular docking between Zn2+ and porcine GH (pGH) using computational biology. We then explored the effect of Zn2+ on the GH signaling ability in the cell model expressing porcine growth hormone receptor (GHR). It was found that the phosphorylation levels of Janus kinase 2, signal transducers and activators of transcription 5/3/1, and GHR increased significantly under Zn2+ treatment, indicating that Zn2+ can enhance the signaling ability of GH/GHR. On this basis, we further explored how Zn2+ regulates the biological activity of GH/GHR. The results showed that downregulation and turnover of GHR changed under Zn2+ /pGH treatment. Zn2+ enhanced the membrane residence time of pGH/GHR and delayed GHR downregulation. Further investigation showed that the internalization dynamic of pGH/GHR was changed by Zn2+ , which prolonged the residence time of pGH/GHR in the cell membrane. These factors acted together to upregulate the signaling of GH/GHR. This study lays a foundation for further exploration of the biological effects of Zn2+ on GH.


Asunto(s)
Membrana Celular/efectos de los fármacos , Cloruros/farmacología , Hepatocitos/efectos de los fármacos , Hormona de Crecimiento Humana/farmacología , Receptores de Somatotropina/agonistas , Compuestos de Zinc/farmacología , Animales , Sitios de Unión , Células CHO , Membrana Celular/metabolismo , Cloruros/metabolismo , Cricetulus , Endocitosis , Hepatocitos/metabolismo , Hormona de Crecimiento Humana/metabolismo , Janus Quinasa 2/metabolismo , Simulación del Acoplamiento Molecular , Fosforilación , Unión Proteica , Receptores de Somatotropina/genética , Receptores de Somatotropina/metabolismo , Factores de Transcripción STAT/metabolismo , Transducción de Señal , Sus scrofa , Compuestos de Zinc/metabolismo
5.
Asian-Australas J Anim Sci ; 31(4): 499-504, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29059726

RESUMEN

OBJECTIVE: Recent studies have challenged the traditional paradigm that growth hormone receptor (GHR) displays physiological functions only in the cell membrane. It has been demonstrated that GHR localizes to the cell nucleus and still exhibits important physiological roles. The phenomenon of nuclear localization of growth hormone (GH)-induced GHR has previously been described in vitro. However, until recently, whether GH could induce nuclear localization of GHR in vivo was unclear. METHODS: In the present study, we used pig as an animal model, and porcine growth hormone (pGH) or saline was injected into the inferior vena cava. We subsequently observed the localization of porcine growth hormone receptor (pGHR) using multiple techniques, including, immunoprecipitation and Western-blotting, indirect immunofluorescence assay and electronmicroscopy. RESULTS: The results showed that pGH could induce nuclear localization of pGHR. Taken together, the results of the present study provided the first demonstration that pGHR was translocated to cell nuclei under pGH stimulation in vivo. CONCLUSION: Nuclear localization of pGHR induced by the in vivo pGH treatment suggests new functions and/or novel roles of nuclear pGHR, which deserve further study.

6.
Gen Comp Endocrinol ; 229: 67-73, 2016 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-26944485

RESUMEN

Growth hormone (GH) is reportedly species-specific. Primate growth hormone can trigger non-primate growth hormone receptor (GHR), but primates GHR cannot be activated by non-primate GH. However, it is also unclear that why primate GH and non-primate GH have different biological activities. Thus, we analysed primate growth hormone (human growth hormone (hGH)) or non-primate GH (porcine growth hormone (pGH))-induced intracellular signalling in 3T3-F442A cells and rat hepatocytes in a dose- and time-dependent manner to explore the different biological activities between them. The results revealed that both hGH and pGH can activate Janus kinase 2 (JAK2), Signal transducers and activators of transcription 1, 3 and 5 (STATs 1, 3 and 5) and extracellular signal-regulated kinase 1/2 (ERK1/2). There were no significant differences in JAK2 or ERK1/2 tyrosine phosphorylation after hGH and pGH treatment, but there were different between hGH and pGH in STAT/1/3/5 tyrosine phosphorylation, and JAK2, STAT/1/3/5 tyrosine phosphorylation was time-dependent and dose-dependent, whereas ERK1/2 was not. Both hGH and pGH demonstrated similar kinetics for STATs 1, 3 and 5 phosphorylation, but the pGH-mediated tyrosine phosphorylation was weaker than that mediated by hGH. Our observations indicated that the levels of main signalling proteins phosphorylation triggered by hGH or pGH were not exactly the same, which may explain the different biological activities showed by primate GH and non-primate GH.


Asunto(s)
Hormona del Crecimiento/metabolismo , Animales , Humanos , Ratones , Conejos , Ratas , Transducción de Señal , Porcinos
7.
Asian-Australas J Anim Sci ; 28(4): 573-83, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25656185

RESUMEN

B-32 is one of a panel of monoclonal anti-idiotypic antibodies to growth hormone (GH) that we developed. To characterize and identify its potential role as a novel growth hormone receptor (GHR) agonist, we determined that B-32 behaved as a typical Ab2ß based on a series of enzyme-linked immunosorbent assay assays. The results of fluorescence-activated cell sorting, indirect immunofluorescence and competitive receptor binding assays demonstrated that B-32 specifically binds to the GHR expressed on target cells. Next, we examined the resulting signal transduction pathways triggered by this antibody in primary porcine hepatocytes. We found that B-32 can activate the GHR and Janus kinase (2)/signal transducers and activators of transcription (JAK2/STAT5) signalling pathways. The phosphorylation kinetics of JAK2/STAT5 induced by either GH or B-32 were analysed in dose-response and time course experiments. In addition, B32 could also stimulate porcine hepatocytes to secrete insulin-like growth factors-1. Our work indicates that a monoclonal anti-idiotypic antibody to GH (B-32) can serve as a GHR agonist or GH mimic and has application potential in domestic animal (pig) production.

8.
Int J Mol Sci ; 15(11): 20538-54, 2014 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-25391041

RESUMEN

A series of studies have reported that monoclonal antibody 263 (Mab263), a monoclonal antibody against the growth hormone receptor (GHR), acts as an agonist in vitro and in vivo. However, the intracellular signaling pathways triggered by Mab263 have not yet been delineated. Therefore, we examined the intracellular signaling pathways induced by Mab263 in vivo and in vitro in the present study. The results show that this antibody activated janus kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3), STAT1 and extracellular signal-regulated kinase 1/2 (ERK1/2), but not STAT5. The phosphorylation kinetics of JAK2, STAT3/1 and ERK1/2 induced by Mab263 were subsequently analyzed in dose-response and time course experiments. Our observations indicate that Mab263 induced different intracellular signaling pathways than GH, which indicates that Mab263 is a signal-specific molecule and that Mab263 may be a valuable biological reagent to study the mechanism(s) of GHR-mediated intracellular signaling pathways.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Janus Quinasa 2/metabolismo , Receptores de Somatotropina/metabolismo , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Animales , Anticuerpos Monoclonales/inmunología , Células CHO , Línea Celular , Cricetulus , Activación Enzimática , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación , Ratas , Receptores de Somatotropina/inmunología
9.
Environ Sci Pollut Res Int ; 31(19): 27864-27882, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38526719

RESUMEN

Ochratoxin A (OTA) is a widespread environmental toxin that poses a serious threat to human and animal health. OTA has been shown to cause cellular and tissue damage and is a global public health problem. However, the effects of OTA on gastrointestinal aging have not been reported. The aim of this study was to investigate the effects of OTA on intestinal aging in vitro and in vivo. In vitro experiments showed that OTA induced cellular inflammation through calcium overload and oxidative stress, significantly up-regulated the expression of P16, P21, and P53 proteins, markedly increased senescence-associated ß-galactosidase activity (SA-ß-gal) positive cells, and obviously decreased the expression of proliferating cell nuclear antigen (PCNA) proteins, which led to intestinal cell senescence. Meanwhile, we found that treatment with ß-carotene ameliorated OTA-induced intestinal cell senescence. Consistent with the results of the in vitro experiments, in vivo studies showed that the intestinal aging of mice fed OTA was significantly higher than that of the control group. In conclusion, OTA may induce intestinal aging through calcium overload, oxidative stress and inflammation. This study lays a foundation for further research on the toxicological effects of OTA.


Asunto(s)
Calcio , Proteína con Dominio Pirina 3 de la Familia NLR , Ocratoxinas , Estrés Oxidativo , Transducción de Señal , Ocratoxinas/toxicidad , Estrés Oxidativo/efectos de los fármacos , Ratones , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Calcio/metabolismo , Transducción de Señal/efectos de los fármacos , Intestinos/efectos de los fármacos , Senescencia Celular/efectos de los fármacos
10.
Int Immunopharmacol ; 124(Pt B): 110961, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37742367

RESUMEN

Aflatoxin B1 (AFB1) is a recognized hazard environmental contaminant mainly found in cereal and fruits. The toxicity of AFB1 exposure to various organs has been revealed in some literature. In current study, we explored the effect of AFB1 exposure on premature aging/senescence of skin. In vivo, 8-week-old C57 mice were used as models to evaluate the effect of dietary AFB1 exposure on premature skin aging. The results showed that AFB1 exposure caused premature skin aging by testing aging markers. Additionally, AFB1 led to oxidative stress and inflammatory response. In vitro, AFB1 exposure triggered premature cellular senescence in mouse skin fibroblasts cells (L929 cells) by assessing a range of cellular senescence-related markers. Further, the potential molecular mechanism by which AFB1 induce the premature skin aging was studied. ROS and Ca2+ is proven to be the key molecules in AFB1-induced cellular senescence. Further, through eliminating Ca2+, AFB1-caused oxidative stress and cellular senescence were both attenuated, suggesting that Ca2+ overload in the mitochondria results in cellular senescence by increasing ROS production. Next, we analyzed the causes of Ca2+ overload, and results showed that AFB1 exposure induces Ca2+ overload through increasing the formation of mitoguardin (Miga) and vesicle-associated membrane protein (VAMP)-associated protein (Vap33)-mediated endoplasmic reticulum (ER)-mitochondria contact sites (ERMCS). AFB1 exposure also inhibited mitophagy, leading to accelerate L929 cell senescence. In short, combining in vivo and in vitro results, we demonstrate that exposure to AFB1 causes premature skin aging, which is dependent on ERMCS/Ca2+/ROS/ signaling axis. The current study suggests that prolonged exposure to AFB1 makes skin more vulnerable to damage.


Asunto(s)
Envejecimiento Prematuro , Envejecimiento de la Piel , Animales , Ratones , Envejecimiento Prematuro/inducido químicamente , Especies Reactivas de Oxígeno/metabolismo , Aflatoxina B1/toxicidad , Aflatoxina B1/metabolismo , Estrés Oxidativo , Inflamación
11.
Theriogenology ; 209: 151-161, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37393745

RESUMEN

The dynamic balance of Ca2+ in oocytes promotes the recovery of the meiotic arrest phase, consequently promoting oocyte maturation. Hence, the analysis of the maintenance and role of calcium homeostasis in oocytes has important guiding significance for obtaining high-quality eggs and maintaining the development of preimplantation embryos. Inositol 1,4,5-trisphosphate receptors (IP3Rs) are calcium channel proteins that regulate the dynamic balance between the endoplasmic reticulum (ER) and mitochondrial Ca2+. Nevertheless, the expression and role of IP3R in normal pig oocytes have not been reported, and other studies have focused on the role of IP3R in damaged cells. The purpose of this study was to investigate the potential role of IP3R in regulating calcium homeostasis in oocyte maturation and early embryonic development. Our results showed that IP3R1 is stably expressed at different stages of porcine oocyte meiosis, IP3R1 gradually converges to the cortex, and cortical clusters are formed in MII stages. The loss of IP3R1 activity contributeds to the failure of porcine oocyte maturation and cumulus cell expansion, as well as the obstruction of polar body excretion. Further analysis showed that IP3R1 plays an important role in affecting calcium balance by regulating the IP3R1-GRP75-VDAC1 channel between mitochondria and the endoplasmic reticulum (ER) during porcine oocyte maturation. Inhibiting IP3R1 expression-induced ER dysfunction, contributeding to ER calcium concentration ([Ca2+]ER) release outwards into mitochondria and causing mitochondrial free calcium concentration ([Ca2+]m) overload and mitochondrial oxidative stress, which was confirmed by the increase in the level of reactive oxygen species (ROS) and apoptosis. Thereby, IP3R1 plays an important role in affecting calcium balance by regulating the IP3R1-GRP75 -VDAC1 channel between mitochondria and the ER during porcine oocyte maturation, inhibiting IP3R1 expression-induced calcium overload and mitochondrial oxidative stress, and increasing ROS levels and apoptosis.


Asunto(s)
Calcio , Oogénesis , Animales , Porcinos , Calcio/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Oocitos/fisiología , Calcio de la Dieta , Desarrollo Embrionario
12.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36573588

RESUMEN

In vitro-cultured oocytes are separated from the follicular micro-environment in vivo and are more vulnerable than in vivo oocytes to changes in the external environment. This vulnerability disrupts the homeostasis of the intracellular environment, affecting oocyte meiotic completion, and subsequent embryonic developmental competence in vitro. Glycine, one of the main components of glutathione (GSH), plays an important role in the protection of porcine oocytes in vitro. However, the protective mechanism of glycine needs to be further clarified. Our results showed that glycine supplementation promoted cumulus cell expansion and oocyte maturation. Detection of oocyte development ability showed that glycine significantly increased the cleavage rate and blastocyst rate during in vitro fertilization (IVF). SMART-seq revealed that this effect was related to glycine-mediated regulation of cell membrane structure and function. Exogenous addition of glycine significantly increased the levels of the anti-oxidant GSH and the expression of anti-oxidant-related genes (glutathione peroxidase 4 [GPX4], catalase [CAT], superoxide dismutase 1 [SOD1], superoxide dismutase 2 [SOD2], and mitochondrial solute carrier family 25, member 39 [SLC25A39]), decreased the lipid peroxidation caused by reactive oxygen species (ROS) and reduced the level of malondialdehyde (MDA) by enhancing the functions of mitochondria, peroxisomes and lipid droplets (LDs) and the levels of lipid metabolism-related factors (peroxisome proliferator activated receptor coactivator 1 alpha [PGC-1α], peroxisome proliferator-activated receptor γ [PPARγ], sterol regulatory element binding factor 1 [SREBF1], autocrine motility factor receptor [AMFR], and ATP). These effects further reduced ferroptosis and maintained the normal structure and function of the cell membrane. Our results suggest that glycine plays an important role in oocyte maturation and later development by regulating ROS-induced lipid metabolism, thereby protecting against biomembrane damage.


Production of high-quality gametes is the premise of livestock reproduction and conservation of germplasm resources, especially high-quality oocytes, as oocyte quality determines the quality of offspring. Due to the limitations in approaches and the number of mature oocytes in vivo, in vitro maturation (IVM) culture has become an important way to obtain mature oocytes. However, IVM-cultured oocytes are separated from the follicular microenvironment in vivo and are, thus, more vulnerable than in vivo oocytes to changes in the external environment. Our study was conducted to determine if exogenous supplementation of glycine, the highest content of amino acids in oviduct fluid and follicular fluid, can improve oocyte maturation efficiency in vitro, and analyze the mechanism of glycine. This study demonstrated that glycine can maintain redox balance and block reactive oxygen species-induced lipid peroxidation, thereby protecting against biomembrane damage and reducing the occurrence of ferroptosis to maintain normal oocyte development function. This study will provide a theoretical basis for preventing and improving oxidative damage during oocyte culture in vitro.


Asunto(s)
Antioxidantes , Técnicas de Maduración In Vitro de los Oocitos , Embarazo , Femenino , Porcinos , Animales , Especies Reactivas de Oxígeno/metabolismo , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Antioxidantes/metabolismo , Peroxidación de Lípido , Glicina/farmacología , Desarrollo Embrionario , Oocitos/fisiología , Blastocisto , Glutatión/metabolismo
13.
Endocrinology ; 164(12)2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37934803

RESUMEN

Prolactin (PRL) and its receptor, PRLR, are closely related to the occurrence and development of breast cancer. hPRL-G129R, an hPRLR antagonist, has been found to induce apoptosis in breast cancer cells via mechanisms currently unknown. Recent studies have indicated that PRLR exhibits dual functions based on its membrane/nucleus localization. In that context, we speculated whether hPRL-G129R is a dual-function antagonist. We studied the internalization of the hPRLR-G129R/PRLR complex using indirect immunofluorescence and Western blot assays. We found that hPRL-G129R not only inhibited PRLR-mediated intracellular signaling at the plasma membrane, but also blocked nuclear localization of the receptor in T-47D and MCF-7 cells in a time-dependent manner. Clone formation and transwell migration assays showed that hPRL-G129R inhibited PRL-driven proliferation and migration of tumor cells in vitro. Further, we found that increasing concentrations of hPRL-G129R inhibited the nuclear localization of PRLR and the levels of signal transducer and activator of transcription (STAT) 5 in tumor-bearing mice and hPRL-G129R also exerted an antiproliferative effect in vivo. These results indicate that hPRL-G129R is indeed a dual-function antagonist. This study lays a foundation for exploring and developing highly effective agents against the proliferation and progression of breast malignancies.


Asunto(s)
Neoplasias de la Mama , Prolactina , Animales , Femenino , Humanos , Ratones , Neoplasias de la Mama/metabolismo , Proliferación Celular , Prolactina/farmacología , Receptores de Prolactina/antagonistas & inhibidores , Células Tumorales Cultivadas
14.
Microbiome ; 11(1): 41, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36869365

RESUMEN

BACKGROUND: Nutrition drives immunity and health in animals, and maternal immunity benefits offspring. In our previous study, a nutritional intervention strategy was found to promote the immunity of hens, which subsequently improved immunity and growth in offspring chicks. Maternal effects clearly exist, but how are mothers' immune advantages transferred to their offspring, and how do they benefit them? RESULTS: Here, we traced the beneficial effects back to the process of egg formation in the reproductive system, and we focused on the embryonic intestinal transcriptome and development, as well as on maternal microbial transfer in offspring. We found that maternal nutritional intervention benefits maternal immunity, egg hatching, and offspring growth. The results of protein and gene quantitative assays showed that the transfer of immune factors into egg whites and yolks depends on maternal levels. Histological observations indicated that the promotion of offspring intestinal development begins in the embryonic period. Microbiota analyses suggested that maternal microbes transfer to the embryonic gut from the magnum to the egg white. Transcriptome analyses revealed that offspring embryonic intestinal transcriptome shifts are related to development and immunity. Moreover, correlation analyses showed that the embryonic gut microbiota is correlated with the intestinal transcriptome and development. CONCLUSIONS: This study suggests that maternal immunity positively influences offspring intestinal immunity establishment and intestinal development beginning in the embryonic period. Adaptive maternal effects might be accomplished via the transfer of relatively large amounts of maternal immune factors and by shaping of the reproductive system microbiota by strong maternal immunity. Moreover, reproductive system microbes may be useful resources for the promotion of animal health. Video Abstract.


Asunto(s)
Pollos , Microbioma Gastrointestinal , Animales , Femenino , Humanos , Herencia Materna , Desarrollo Infantil , Perfilación de la Expresión Génica
15.
Cell Stress Chaperones ; 27(3): 285-293, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35384615

RESUMEN

At present, heat stress caused by the thermal environment is the main factor that endangers the reproductive function of animals. Growth hormone (GH) is a polypeptide hormone, the biological function of reproductive organs has been reported, and it has many important physiological functions in the body. However, so far, the behavior and signal transduction of GH in testicular cells under heat stress are still unclear. To this end, in the current work, we use a swine testicular cell line (ST) as an in vitro model to explore the cell behavior and intracellular signaling profile of porcine growth hormone (pGH) under heat stress; the results showed that when cells were under heat stress, pGH and GHR were basically not internalized, and a large number of them accumulated on the cell membrane. In addition, we also studied the effect of pGH on the JAK2-STATs signaling pathway and IGF-1 expression under heat stress, we found that the ability of pGH to activate the JAK-STATs signaling pathway and IGF-1 under heat stress was greatly reduced (p < 0.05). In conclusion, our research shows that when cells undergo heat stress, the internalization of pGH and GHR were inhibited, and the activation of the JAK2-STATs signaling pathway and IGF-1 expression were reduced; this lays a solid foundation for further research on the effect of pGH on swine testicular tissue under thermal environment.


Asunto(s)
Hormona del Crecimiento , Receptores de Somatotropina , Animales , Hormona del Crecimiento/metabolismo , Hormona del Crecimiento/farmacología , Respuesta al Choque Térmico , Factor I del Crecimiento Similar a la Insulina , Receptores de Somatotropina/metabolismo , Transducción de Señal , Porcinos
16.
Oxid Med Cell Longev ; 2022: 1881519, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36524217

RESUMEN

The liver is the largest digestive organ in the human body. The increasing incidence of chronic liver fibrosis is one of the major health challenges in the world. Liver fibrosis is a wound-healing response to acute or chronic cellular damage of liver tissue. At present, despite a series of research progress on the pathophysiological mechanism of fibrosis that has been made, there is still a gap in identifying antifibrotic targets and converting them into effective treatments. Therefore, it is extremely important to seek a molecular target that can alleviate or reverse liver fibrosis, which has important scientific and clinical significance. In the current study, to evaluate the therapeutic effect of HBO1 as a molecular target on liver aging and fibrosis, naturally-aged mice and CCL4-induced liver fibrosis mice were used as animal models, and multiple experiments were performed. Experimental results showed that HBO1 knockdown could strongly mitigate the accumulation of hepatic collagen by Masson and Sirius Red staining. Further study showed that HBO1 knockdown reduced the expression of fibrosis-related marker molecules (α-SMA, collagen type I (ColI), and fibronectin). Further work showed that HBO1 knockdown could significantly alleviate HSC activation. On this basis, we analyzed the underlying mechanism by which HBO1 alleviates liver fibrosis. It was found that HBO1 knockdown may modulate liver fibrosis by regulating the processes of EMT, inflammation, and oxidative stress. We further studied the effect of HBO1 knockdown on liver aging and aging-related liver fibrosis, and the results showed that HBO1 knockdown could significantly reduce the level of aging-related liver fibrosis and relieve liver aging. In conclusion, we systematically investigated the potential of HBO1 as a therapeutic target to attenuate liver fibrosis and liver aging. The current study found a crucial target for liver fibrosis and liver-aging therapy, which has laid a solid foundation for the liver fibrosis-related research.


Asunto(s)
Tetracloruro de Carbono , Cirrosis Hepática , Ratones , Humanos , Animales , Anciano , Tetracloruro de Carbono/efectos adversos , Cirrosis Hepática/terapia , Cirrosis Hepática/tratamiento farmacológico , Hígado/metabolismo , Estrés Oxidativo , Envejecimiento , Células Estrelladas Hepáticas
17.
Cell Biochem Biophys ; 80(2): 403-414, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35171434

RESUMEN

Porcine growth hormone (pGH) has many important biological functions and roles, and the biological activity of pGH is closely related with its cell behavior and characteristics. However, so far, the behavior of pGH in swine testicular cell remains unclear. For this, in the current work, the swine testicular cell line (ST) was used as an in vitro model, and CLSM (Confocal laser scanning microscope), IFA (Indirect immunofluorescence assay), FCM (Flow cytometry) and WB (Western-blotting) were used to explore the pGH's cell behivior and function, and the results showed that pGH and GHR could internalize into ST cell and transported to the nucleus. Furthermore, we studied the internalization kinetics of pGH and GHR on ST cell, and found that pGH and GHR internalizes into ST cell in a time-dependent manner. More importantly, we also investigated the potential molecular functions of pGH-GHR after it entered into the cell nuclei. The results indicated that nuclear-localized GHR could participate in cell proliferation by regulating the signal intensity of STAT5. In summary, our current research shows that the nuclear-localized pGH-GHR participates in the cell proliferation of ST cell, which lays a solid foundation for further research on the regulatory effect of pGH on testicular tissue.


Asunto(s)
Hormona del Crecimiento , Receptores de Somatotropina , Animales , Núcleo Celular/metabolismo , Hormona del Crecimiento/metabolismo , Hormona del Crecimiento/farmacología , Hepatocitos/metabolismo , Receptores de Somatotropina/metabolismo , Transducción de Señal , Porcinos
18.
Tissue Cell ; 79: 101963, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36334324

RESUMEN

Senescence is associated with a decline in physiological function, which is accompanied by onset of diseases. Growth hormone (GH) is a class of growth-promoting cytokines with reduced secretion in aging populations. However, the effect of senescence on GH bioactivity is not fully understood in human mesenchymal stem cells (hMSCs). In this work, GH-induced cellular behavior and intracellular signaling transduction were explored in senescent hMSCs. Therefore, hMSCs were used to establish a senescence model by H2O2 treatment for this study. First, we investigated the effects of cellular senescence on the cell behavior of GH. The experimental results suggested that GH could not be internalized into the nucleus, and a significant reduction in GH internalization into the cytoplasm was observed in senescent hMSCs compared to the control group. Second, the effect of cellular senescence on GH-mediated intracellular signaling pathways was investigated by Western blotting. For this, the signaling molecule activation of Janus kinase 2 (JAK2)/signal transducer and activator transcription (STAT) stimulated by GH was detected. Our data indicated that the signaling intensity of p-JAK2, p-STAT5, p-STAT3 and p-STAT1 was considerably weakened. Taken together, these findings provide important insights into the impaired effects of cellular senescence on the biological activity of GH.


Asunto(s)
Hormona del Crecimiento , Células Madre Mesenquimatosas , Humanos , Peróxido de Hidrógeno/farmacología , Senescencia Celular , Ciclo Celular
19.
Environ Pollut ; 309: 119756, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35839969

RESUMEN

Monobutyl phthalate (MBP) is the main metabolite of dibutyl phthalate (DBP) in vivo. MBP has a stable structure, can continuously accumulate in living organisms, and has the potentially to harm animal and human reproductive function. In the ovarian follicle microenvironment, MBP may lead to defects in follicular development and steroid production, abnormal meiotic maturation, impaired ovarian function and other reproductive deficits. In this study, SMART-seq was used to investigate the effects of MBP exposure on the in vitro maturation (IVM) and development of porcine oocytes. The results showed that differentially expressed genes after MBP exposure were enriched in the biological processes cytoskeleton, cell apoptosis, endoplasmic reticulum (ER) and mitochondria. Glycine (Gly) improved the developmental potential of porcine oocytes by regulating mitochondrial and ER function. The effect of Gly in protecting oocytes against MBP-induced damage was studied. The results showed that the addition of Gly significantly decreased the rate of MBP-induced spindle abnormalities, decreased the frequency of MBP-induced mitochondria-associated ER membrane (MAM) interactions, and downregulated the protein and gene expression of the linkage molecules Mitofusin 1 (MFN1) and Mitofusin 2 (MFN2) in the MAM. Additionally, treatment with Gly restored the distribution of the 1,4,5-triphosphate receptor 1 (IP3R1) and voltage-dependent anion channel 1 (VDAC1), further decreasing the intracellular free calcium concentration ([Ca2+]i) levels and mitochondrial Ca2+ ([Ca2+]m) , increasing the ER Ca2+ ([Ca2+]ER) levels, and thus significantly increasing the ER levels and mitochondrial membrane potential (ΔΨ m). Gly also decreased the levels of reactive oxygen species (ROS) and increased the levels of Glutathione (GSH), oocyte apoptosis-related indicators (Caspase-3 activity and Annexin V) and oocyte apoptosis-related genes (BAX, Caspase 3 and AIFM1). Our results suggest that Gly can ameliorate microtubule cytoskeleton abnormalities and improve oocyte maturation by reducing the defective mitochondrial-ER interactions caused by MBP exposure in vitro.


Asunto(s)
Glicina , Oocitos , Animales , Apoptosis , Retículo Endoplásmico , Femenino , Glutatión/metabolismo , Glicina/metabolismo , Glicina/farmacología , Glicina/uso terapéutico , Humanos , Mitocondrias , Ácidos Ftálicos/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Porcinos
20.
J Food Sci ; 86(5): 2118-2130, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33884622

RESUMEN

ß-Carotene displays antioxidant and anti-inflammatory activities and prevents the development of cancer. Ulcerative colitis (UC) is a kind of inflammatory bowel disease that is accompanied by a certain risk of colon cancer. However, the role of ß-carotene in the modulation of gut microbiota and UC improvement is unclear. In this research, the properties of ß-carotene on anti-inflammatory and the composition of gut microbiota were evaluated in a rat model of UC induced by dextran sulfate sodium (DSS). The results revealed that ß-carotene significantly (p < 0.05) decreased the severity of colitis in rats, as assessed using body weight (6.00 ± 1.73%), colon length (22.23 ± 0.53%), and disease activity index, and improved the structure of the colon damaged. Moreover, colonic levels of proinflammatory cytokines were significantly lower following ß-carotene supplementation. ß-Carotene intervention also lowered the expression levels of phosphorylated p65 (0.60 ± 0.02), p38 (0.57 ± 0.00), Erk (0.63 ± 0.04), and JNK (0.70 ± 0.00). The result of the relative abundance of gut microbiota showed that DSS administration significantly changed the microbial structure at the phylum and genus levels of rats. Furthermore, ß-carotene treatment significantly increased the abundance of Faecalibacterium, the levels of which negatively correlated with the levels of inflammatory cytokines. Faecalibacterium may be a potential target in the alleviation of DSS-induced UC. ß-Carotene can alleviate DSS-induced UC through the regulation of gut microbiota. This study provides a reference for the rational use of ß-carotene in the treatment of UC. PRACTICAL APPLICATION: ß-Carotene can relieve ulcerative colitis and regulate the gut microbiota; the nutritional intervention of ß-carotene enhancing animal health.


Asunto(s)
Antiinflamatorios/farmacología , Colitis Ulcerosa/tratamiento farmacológico , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Microbioma Gastrointestinal/efectos de los fármacos , beta Caroteno/farmacología , Animales , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/microbiología , Citocinas/metabolismo , Masculino , Provitaminas/farmacología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA