Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Plant Cell ; 33(7): 2197-2220, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-33822225

RESUMEN

Root architecture is a major determinant of plant fitness and is under constant modification in response to favorable and unfavorable environmental stimuli. Beyond impacts on the primary root, the environment can alter the position, spacing, density, and length of secondary or lateral roots. Lateral root development is among the best-studied examples of plant organogenesis, yet there are still many unanswered questions about its earliest steps. Among the challenges faced in capturing these first molecular events is the fact that this process occurs in a small number of cells with unpredictable timing. Single-cell sequencing methods afford the opportunity to isolate the specific transcriptional changes occurring in cells undergoing this fate transition. Using this approach, we successfully captured the transcriptomes of initiating lateral root primordia in Arabidopsis thaliana and discovered many upregulated genes associated with this process. We developed a method to selectively repress target gene transcription in the xylem pole pericycle cells where lateral roots originate and demonstrated that the expression of several of these targets is required for normal root development. We also discovered subpopulations of cells in the pericycle and endodermal cell files that respond to lateral root initiation, highlighting the coordination across cell files required for this fate transition.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Raíces de Plantas/genética , Transcriptoma/genética , Regulación de la Expresión Génica de las Plantas/genética
6.
Proc Natl Acad Sci U S A ; 113(40): 11354-11359, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27647902

RESUMEN

Auxin-regulated transcription pivots on the interaction between the AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) repressor proteins and the AUXIN RESPONSE FACTOR (ARF) transcription factors. Recent structural analyses of ARFs and Aux/IAAs have raised questions about the functional complexes driving auxin transcriptional responses. To parse the nature and significance of ARF-DNA and ARF-Aux/IAA interactions, we analyzed structure-guided variants of synthetic auxin response circuits in the budding yeast Saccharomyces cerevisiae Our analysis revealed that promoter architecture could specify ARF activity and that ARF19 required dimerization at two distinct domains for full transcriptional activation. In addition, monomeric Aux/IAAs were able to repress ARF activity in both yeast and plants. This systematic, quantitative structure-function analysis identified a minimal complex-comprising a single Aux/IAA repressing a pair of dimerized ARFs-sufficient for auxin-induced transcription.


Asunto(s)
Arabidopsis/genética , Redes Reguladoras de Genes , Ácidos Indolacéticos/farmacología , Arabidopsis/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Modelos Biológicos , Mutación/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Multimerización de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Elementos de Respuesta/genética , Transcripción Genética/efectos de los fármacos , Transgenes
7.
Development ; 142(5): 905-9, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25633353

RESUMEN

Auxin elicits diverse cell behaviors through a simple nuclear signaling pathway initiated by degradation of Aux/IAA co-repressors. Our previous work revealed that members of the large Arabidopsis Aux/IAA family exhibit a range of degradation rates in synthetic contexts. However, it remained an unresolved issue whether differences in Aux/IAA turnover rates played a significant role in plant responses to auxin. Here, we use the well-established model of lateral root development to directly test the hypothesis that the rate of auxin-induced Aux/IAA turnover sets the pace for auxin-regulated developmental events. We did this by generating transgenic plants expressing degradation rate variants of IAA14, a crucial determinant of lateral root initiation. Progression through the well-established stages of lateral root development was strongly correlated with the engineered rates of IAA14 turnover, leading to the conclusion that Aux/IAAs are auxin-initiated timers that synchronize developmental transitions.


Asunto(s)
Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Ácidos Indolacéticos/farmacología , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo
11.
Dev Biol ; 419(1): 156-164, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-26994944

RESUMEN

Organogenesis requires the coordination of many highly-regulated developmental processes, including cell fate determination, cell division and growth, and cell-cell communication. For tissue- and organ-scale coordination, a network of regulators enables molecular events in individual cells to translate into multicellular changes in structure and functional capacity. One recurrent theme in plant developmental networks is a central role for plant hormones, especially auxin. Here, we focus first on describing recent advances in understanding lateral root development, one of the best-studied examples of auxin-mediated organogenesis. We then use this framework to examine the parallel process of emergence of lateral organs in the shoot-a process called phyllotaxy. This comparison reveals a high degree of conservation, highlighting auxin's pivotal role determining overall plant architecture.


Asunto(s)
Ácidos Indolacéticos , Desarrollo de la Planta/fisiología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Citocininas/fisiología , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Inflorescencia/crecimiento & desarrollo , Modelos Biológicos , Desarrollo de la Planta/genética , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Nicho de Células Madre
13.
Plant Physiol ; 169(1): 803-13, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26149575

RESUMEN

Ubiquitin-mediated protein degradation is a common feature in diverse plant cell signaling pathways; however, the factors that control the dynamics of regulated protein turnover are largely unknown. One of the best-characterized families of E3 ubiquitin ligases facilitates ubiquitination of auxin (aux)/indole-3-acetic acid (IAA) repressor proteins in the presence of auxin. Rates of auxin-induced degradation vary widely within the Aux/IAA family, and sequences outside of the characterized degron (the minimum region required for auxin-induced degradation) can accelerate or decelerate degradation. We have used synthetic auxin degradation assays in yeast (Saccharomyces cerevisiae) and in plants to characterize motifs flanking the degron that contribute to tuning the dynamics of Aux/IAA degradation. The presence of these rate motifs is conserved in phylogenetically distant members of the Arabidopsis (Arabidopsis thaliana) Aux/IAA family, as well as in their putative Brassica rapa orthologs. We found that rate motifs can act by enhancing interaction between repressors and the E3, but that this is not the only mechanism of action. Phenotypes of transgenic plants expressing a deletion in a rate motif in IAA28 resembled plants expressing degron mutations, underscoring the functional relevance of Aux/IAA degradation dynamics in regulating auxin responses.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/química , Proteolisis , Secuencias de Aminoácidos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Unión Proteica , Estructura Terciaria de Proteína
14.
Curr Opin Plant Biol ; 57: 1-7, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32480312

RESUMEN

Plant development programs are constantly updated by information about environmental conditions, currently available resources, and sites of active organogenesis. Much of this information is encoded in modifications of transcription factors that lead to changes in their relative abundance, activity and localization. Recent work on the Auxin Response Factor family of transcription factors has highlighted the large diversity of such modifications, as well as how they may work synergistically or antagonistically to regulate downstream responses. ARFs can be regulated by alternative splicing, post-translational modification, and subcellular localization, among many other mechanisms. Beyond the many ways ARFs themselves can be regulated, they can also act cooperatively with other transcription factors to enable highly complex genetic networks with distinct developmental outcomes. Multi-level regulation like what has been documented for ARFs has the capacity to generate flexibility in transcriptional outputs, as well as resilience to short-term perturbations.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Factores de Transcripción , Empalme Alternativo , Ácidos Indolacéticos , Desarrollo de la Planta/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
Plant Direct ; 3(7): e00147, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31372596

RESUMEN

Thousands of sequenced genomes are now publicly available capturing a significant amount of natural variation within plant species; yet, much of these data remain inaccessible to researchers without significant bioinformatics experience. Here, we present a webtool called ViVa (Visualizing Variation) which aims to empower any researcher to take advantage of the amazing genetic resource collected in the Arabidopsis thaliana 1001 Genomes Project (http://1001genomes.org). ViVa facilitates data mining on the gene, gene family, or gene network level. To test the utility and accessibility of ViVa, we assembled a team with a range of expertise within biology and bioinformatics to analyze the natural variation within the well-studied nuclear auxin signaling pathway. Our analysis has provided further confirmation of existing knowledge and has also helped generate new hypotheses regarding this well-studied pathway. These results highlight how natural variation could be used to generate and test hypotheses about less-studied gene families and networks, especially when paired with biochemical and genetic characterization. ViVa is also readily extensible to databases of interspecific genetic variation in plants as well as other organisms, such as the 3,000 Rice Genomes Project ( http://snp-seek.irri.org/) and human genetic variation ( https://www.ncbi.nlm.nih.gov/clinvar/).

16.
PLoS One ; 11(8): e0161791, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27564448

RESUMEN

Plants have evolved elaborate mechanisms controlling developmental responses to environmental stimuli. A particularly important stimulus is temperature. Previous work has identified the interplay of PIF4 and ELF3 as a central circuit underlying thermal responses in Arabidopsis thaliana. However, thermal responses vary widely among strains, possibly offering mechanistic insights into the wiring of this circuit. ELF3 contains a polyglutamine (polyQ) tract that is crucial for ELF3 function and varies in length across strains. Here, we use transgenic analysis to test the hypothesis that natural polyQ variation in ELF3 is associated with the observed natural variation in thermomorphogenesis. We found little evidence that the polyQ tract plays a specific role in thermal responses beyond modulating general ELF3 function. Instead, we made the serendipitous discovery that ELF3 plays a crucial, PIF4-independent role in thermoresponsive flowering under conditions more likely to reflect field conditions. We present evidence that ELF3 acts through the photoperiodic pathway, pointing to a previously unknown symmetry between low and high ambient temperature responses. Moreover, in analyzing two strain backgrounds with different thermal responses, we demonstrate that responses may be shifted rather than fundamentally rewired across strains. Our findings tie together disparate observations into a coherent framework in which multiple pathways converge in accelerating flowering in response to temperature, with some such pathways modulated by photoperiod.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Flores/fisiología , Factores de Transcripción/fisiología , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Ritmo Circadiano , Flores/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Hipocótilo/fisiología , Mutación , Péptidos/química , Fenotipo , Fotoperiodo , Temperatura , Factores de Transcripción/genética , Transgenes
17.
Dev Cell ; 33(1): 107-18, 2015 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-25850675

RESUMEN

Developmental transitions can be described in terms of morphology and the roles of individual genes, but also in terms of global transcriptional and epigenetic changes. Temporal dissections of transcriptome changes, however, are rare for intact, developing tissues. We used RNA sequencing and microarray platforms to quantify gene expression from labeled cells isolated by fluorescence-activated cell sorting to generate cell-type-specific transcriptomes during development of an adult stem-cell lineage in the Arabidopsis leaf. We show that regulatory modules in this early lineage link cell types that had previously been considered to be under separate control and provide evidence for recruitment of individual members of gene families for different developmental decisions. Because stomata are physiologically important and because stomatal lineage cells exhibit exemplary division, cell fate, and cell signaling behaviors, this dataset serves as a valuable resource for further investigations of fundamental developmental processes.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Biomarcadores/metabolismo , Linaje de la Célula , Perfilación de la Expresión Génica , Hojas de la Planta/citología , Hojas de la Planta/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Comunicación Celular , Diferenciación Celular , Regulación de la Expresión Génica de las Plantas , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA