Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Ecol ; 32(18): 5042-5054, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37548336

RESUMEN

Hydrogen sulfide is a toxic gas that disrupts numerous biological processes, including energy production in the mitochondria, yet fish in the Poecilia mexicana species complex have independently evolved sulfide tolerance several times. Despite clear evidence for convergence at the phenotypic level in these fishes, it is unclear if the repeated evolution of hydrogen sulfide tolerance is the result of similar genomic changes. To address this gap, we used a targeted capture approach to sequence genes associated with sulfide processes and toxicity from five sulfidic and five nonsulfidic populations in the species complex. By comparing sequence variation in candidate genes to a reference set, we identified similar population structure and differentiation, suggesting that patterns of variation in most genes associated with sulfide processes and toxicity are due to demographic history and not selection. But the presence of tree discordance for a subset of genes suggests that several loci are evolving divergently between ecotypes. We identified two differentiation outlier genes that are associated with sulfide detoxification in the mitochondria that have signatures of selection in all five sulfidic populations. Further investigation into these regions identified long, shared haplotypes among sulfidic populations. Together, these results reveal that selection on standing genetic variation in putatively adaptive genes may be driving phenotypic convergence in this species complex.


Asunto(s)
Extremófilos , Sulfuro de Hidrógeno , Poecilia , Animales , Sulfuro de Hidrógeno/toxicidad , Ecosistema , Sulfuros , Poecilia/genética , Variación Genética/genética , Selección Genética
2.
Genome Biol Evol ; 16(5)2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38788745

RESUMEN

Adaptation to extreme environments often involves the evolution of dramatic physiological changes. To better understand how organisms evolve these complex phenotypic changes, the repeatability and predictability of evolution, and possible constraints on adapting to an extreme environment, it is important to understand how adaptive variation has evolved. Poeciliid fishes represent a particularly fruitful study system for investigations of adaptation to extreme environments due to their repeated colonization of toxic hydrogen sulfide-rich springs across multiple species within the clade. Previous investigations have highlighted changes in the physiology and gene expression in specific species that are thought to facilitate adaptation to hydrogen sulfide-rich springs. However, the presence of adaptive nucleotide variation in coding and regulatory regions and the degree to which convergent evolution has shaped the genomic regions underpinning sulfide tolerance across taxa are unknown. By sampling across seven independent lineages in which nonsulfidic lineages have colonized and adapted to sulfide springs, we reveal signatures of shared evolutionary rate shifts across the genome. We found evidence of genes, promoters, and putative enhancer regions associated with both increased and decreased convergent evolutionary rate shifts in hydrogen sulfide-adapted lineages. Our analysis highlights convergent evolutionary rate shifts in sulfidic lineages associated with the modulation of endogenous hydrogen sulfide production and hydrogen sulfide detoxification. We also found that regions with shifted evolutionary rates in sulfide spring fishes more often exhibited convergent shifts in either the coding region or the regulatory sequence of a given gene, rather than both.


Asunto(s)
Adaptación Fisiológica , Evolución Molecular , Sulfuro de Hidrógeno , Animales , Sulfuro de Hidrógeno/metabolismo , Adaptación Fisiológica/genética , Secuencias Reguladoras de Ácidos Nucleicos , Filogenia , Poecilia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA