Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Pharm ; 628: 122273, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36228881

RESUMEN

Pharmaceutical toxicity evaluations often use in vitro systems involving primary cells, cell lines or red blood cells (RBCs). Cell-based analyses ('bioassays') can be cumbersome and typically rely on hard-to-standardize biological materials. Amphotericin B (AmB) toxicity evaluations are primarily based on potassium release from RBCs and share these limitations. This study evaluates the potential substitution of two physicochemical AmB toxicity approaches for the bioassay: Ultraviolet-visible spectroscopy (UV-vis) and in vitro drug release kinetics. UV-vis spectral analyses indicated that liposomal AmB's (L-AmB) main peak position (λmax) and peak ratio (OD346/OD322) are potential toxicity surrogates. Similarly, two first-order release parameters derived from USP-4 in vitro drug release analyses also provided linear relationships with toxicity. These were the initial, overall drug release rate and the ratio of loose to tight AmB pools. Positive slopes and high correlation coefficients (R2 > 0.9) characterized all interrelations between physicochemical parameters and toxicity. These tests converted the manufacturing variables' nonlinear (i.e., curvilinear) relationships with in vitro toxicity to linear responses. Three different toxicity attenuation approaches (2 manufacturing, 1 formulation), covering formulation composition and process aspects, support this approach's universality. These data suggest that one or more spectral and kinetic physicochemical tests can be surrogates for L-AmB in vitro toxicity testing.


Asunto(s)
Anfotericina B , Antifúngicos , Anfotericina B/toxicidad , Anfotericina B/química , Antifúngicos/toxicidad , Antifúngicos/química , Liposomas , Liberación de Fármacos
2.
Asian J Pharm Sci ; 17(4): 544-556, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36105314

RESUMEN

Amphotericin B (AmB) is an amphiphilic drug commonly formulated in liposomes and administered intravenously to treat systemic fungal infections. Recent studies on the liposomal drug product have shed light on the AmB aggregation status in the bilayer, which heat treatment (curing) modifies. Although toxicity was found related to aggregation status - loose aggregates significantly more toxic than tight aggregates - the precise mechanism linking aggregation and toxicity was not well understood. This study directly measured drug release rate from various AmB liposomal preparations made with modified curing protocols to evaluate correlations among drug aggregation state, drug release, and in vitro toxicity. UV-Vis spectroscopy of these products detected unique curing-induced changes in the UV spectral features: a ∼25 nm blue-shift of the main absorption peak (λmax) in aqueous buffer and a decrease in the OD346/OD322 ratio upon thermal curing, reflecting tighter aggregation. In vitro release testing (IVRT) data showed, by applying and fitting first-order release kinetic models for one or two pools, that curing impacts two significant changes: a 3-5-fold drop in the overall drug release rate and a ten-fold decrease in the ratio between the loosely aggregated and the tightly aggregated, more thermodynamically stable drug pool. The kinetic data thus corroborated the trend independently deduced from the UV-Vis spectral data. The in vitro toxicity assay indicated a decreased toxicity with curing, as shown by the significantly increased concentration, causing half-maximal potassium release (TC50). The data suggest that the release of AmB requires dissociation of the tight complexes within the bilayer and that the reduced toxicity relates to this slower rate of dissociation. This study demonstrates the relationship between AmB aggregation status within the lipid bilayer and drug release (directly measured rate constants), providing a mechanistic link between aggregation status and in vitro toxicity in the liposomal formulations.

3.
Int J Pharm ; 585: 119473, 2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-32473373

RESUMEN

In this work, the manufacturing process of a complex liposomal amphotericin B (AmB) product was optimized using quality by design (QbD) approach. A comprehensive QbD-based process understanding and design space (DS) to the critical process parameters (CPPs) is essential to the drug development and consistent quality control. The process was based on the acid-aided formation of drug-lipid complexes in a methanol-chloroform mixture (step I) followed by spray drying (step II), hydration and liposome formation by microfluidization (step III), and lyophilization (step IV). Firstly, the risk assessment was conducted to identify the critical process parameters among the four key steps. Nine CPPs and five CQAs (API Monomer identity (absorbance main peak at 321 nm), API Aggregation identity (absorbance peak ratio, OD 415 nm/321 nm), particle size, in-vitro toxicity, and the cake quality) were determined based on their severity and occurrences with their contribution to the quality target product profile (QTPP). Based on the risk assessment results, the final screening design of experiments (DoE) was developed using fractional factorial design. Secondly, the empirical equation was developed for each CQA based on experimental data. The impact of CPPs on the CQAs was analyzed using the coefficient plot and contour plot. In addition to the effect of individual formulation parameters and process parameters, the effects of the four key separate steps were also evaluated and compared. In general, the curing temperature during microfluidization has been identified as the most significant CPP. Finally, design space exploration was carried out to demonstrate how the critical process parameters can be varied to consistently produce a drug product with desired characteristics. The design space size increased at the higher value of the curing temperature, the API to phospholipid ratio (API:PL), and the lower value of the DSPG to phospholipid ratio (PG:PL) and aspirator rate.


Asunto(s)
Anfotericina B/administración & dosificación , Química Farmacéutica/métodos , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Cloroformo/química , Liofilización/métodos , Metanol/química , Control de Calidad , Tecnología Farmacéutica
4.
Int J Pharm ; 565: 447-457, 2019 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-31071418

RESUMEN

Identifying the critical process parameters (CPPs) of a complex drug product manufacture and the associated impact on critical quality attributes (CQAs) is essential to the development and quality control of both new and generic drugs. AmBisome, a liposomal amphotericin B (AMB) macrolide antibiotic widely adopted as an important antifungal drug product, was used as a model complex drug product in the current study. This study investigated how multi-step production approaches and related manufacturing conditions may affect essential physico-chemical and toxicological properties of the final drug product. A key challenge in the manufacture and analysis of liposomal AMB was the drug substance's propensity to aggregate, with associated poor solubility in water and organic solvents. This study identified three key CPPs in a four step manufacturing process: (i) proper acidification during formation of the drug-lipid complexes (Step 1), (ii) liposome heat curing following liposomal particle sizing (Step 3), and (iii) flash-freezing at the initial stages of the lyophilization cycle (Step 4). Over-acidification led to rapid degradation of the drug, whereas under-acidification hampered full solubilization and formation of the soluble drug-lipid complexes. Extended heat treatment of the formed liposomes at 65 °C, just above the lipid phase transition temperature, brought dramatic changes in the aggregated state and/or packing of the drug in the liposomal bilayer, as followed by the complex changes in the UV/Vis spectra. Such thermal conditioning resulted in a five- to ten-fold reduction in the in-vitro toxicity of the drug product, bringing it close to the values for AmBisome used as control and measured by the RBC assay. Finally, flash-freezing conditions during lyophilization was critical to prevent aggregation and maintaining the 80-120 nm liposome size when reconstituted. Our research found that changes in the amphotericin's UV/Vis spectra were a sensitive CQA measure and provided a set of quantitative parameters for a facile non-destructive process monitoring in-situ, as well as for comparison of the quality of final formulations.


Asunto(s)
Anfotericina B/química , Antibacterianos/química , Antifúngicos/química , Anfotericina B/toxicidad , Animales , Antibacterianos/toxicidad , Antifúngicos/toxicidad , Composición de Medicamentos , Eritrocitos/efectos de los fármacos , Congelación , Calor , Tamaño de la Partícula , Ratas
5.
Org Lett ; 7(9): 1753-6, 2005 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-15844898

RESUMEN

[reaction: see text] The synthesis of 6,11-dihydro-5H-indeno[1,2-c]isoquinolin-5-ones from the base-promoted condensation reaction of homophthalic anhydride and 2-(bromomethyl)-benzonitrile and a convenient method for the synthesis of indolo[3,2-c]isoquinolinones are described.


Asunto(s)
Técnicas Químicas Combinatorias , Indenos/síntesis química , Indoles/síntesis química , Isoquinolinas/síntesis química , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA