RESUMEN
We elucidate photoexcitation dynamics in C(60) and zinc phthalocyanine (ZnPc) from picoseconds to milliseconds by transient absorption and time-resolved terahertz spectroscopy. Autoionization of C(60) is a precursor to photocarrier generation. Decay of the terahertz signal is due to decreasing photocarrier mobility over the first 20 ps and thereafter reflects recombination dynamics. Singlet diffusion rates in C(60) are determined by modeling the rise of ground state bleaching of ZnPc absorption following C(60) excitation. Recombination dynamics transform from bimolecular to monomolecular as the layer thickness is reduced, revealing a metastable exciplex at the C(60)/ZnPc interface with a lifetime of 150 µs.
RESUMEN
The design, fabrication, and properties of one of a new class of gradient-index lenses are reported. The lens is an f/2.25 GRIN singlet based on a nanolayered polymer composite material, designed to correct for spherical aberration. The light gathering and focusing properties of the polymer lens are compared to a homogeneous BK7 glass singlet with a similar f-number. The modulation transfer function of the polymer GRIN lens exceeded that of the homogeneous glass lens at all spatial frequencies and was as much as 3 times better at 5 cyc/mm. The weight of the polymer lens was approximately an order of magnitude less than the homogeneous glass lens.
Asunto(s)
Materiales Biomiméticos , Córnea , Cristalino , Lentes , Polímeros/química , Diseño de Equipo , Análisis de Falla de Equipo , HumanosRESUMEN
Two novel dioxolane-substituted pentacene derivatives, namely, 6,14-bis-(triisopropylsilylethynyl)-1,3,9,11-tetraoxa-dicyclopenta[b,m]pentacene (TP-5) and 2,2,10,10-tetraethyl-6,14-bis-(triisopropylsilylethynyl)-1,3,9,11-tetraoxa-dicyclopenta[b,m]pentacene (EtTP-5), have been synthesized and spectroscopically characterized. Here, we examine the steady-state and time-resolved photoluminescence (PL) of solid-state composite films containing these pentacene derivatives dispersed in tris(quinolin-8-olato)aluminum(III) (Alq(3)). The films show narrow red emission and high absolute photoluminescence quantum yields (phi(PL) = 59% and 76% for films containing approximately 0.25 mol % TP-5 and EtTP-5, respectively). The Förster transfer radius for both guest-host systems is estimated to be approximately 33 A. The TP-5/Alq(3) thin films show a marked decrease in phi(PL) with increasing guest molecule concentrations, accompanied by dramatic changes in the PL spectra, suggesting that intermolecular interactions between pentacene molecules result in the formation of weakly radiative aggregates. In contrast, a lesser degree of fluorescence quenching is observed for EtTP-5/Alq(3) films. The measured fluorescence lifetimes of TP-5 and EtTP-5 are similar (approximately 18 ns) at low concentrations but deviate at higher concentrations as aggregation begins to play a role in the TP-5/Alq(3) films. The onset of aggregation in EtTP-5/Alq(3) films occurs at higher guest molecule concentrations (>1.00 mol %). The addition of ethyl groups on the terminal dioxolane rings leads to an increase in the intermolecular spacing in the solid, thereby reducing the tendency for pi-pi molecular stacking and aggregation.
RESUMEN
We examine the steady-state and time-resolved photoluminescence of guest-host films featuring a dioxolane-substituted pentacene derivative (2,2,10,10-tetraethyl-6,14-bis(triisopropylsilylethynyl)-1,3,9,11-tetraoxadicyclopenta[b,m]pentacene, EtTP-5) dispersed in the hole transporting material (4,4-bis[N-1-naphthyl-N-phenylamino]biphenyl, alpha-NPD). The films show bright red emission (lambda(max) = 640 nm) as a result of efficient Förster energy transfer from alpha-NPD host molecules to EtTP-5 guest molecules. High absolute photoluminescence (PL) quantum yield (phi(PL) = 76% +/- 4%) and fluorescence lifetime (tau = 18.6 +/- 0.8 ns) were measured at low concentration (0.28 mol % EtTP-5), with moderate PL quenching observed upon increasing the EtTP-5 concentration. The concentrated films (> or = 1.50 mol % EtTP-5) show less evidence of aggregation than previously seen when EtTP-5 was dispersed in tris(quinolin-8-olato)aluminum(III), making alpha-NPD a superior host for the red-emitting EtTP-5.
RESUMEN
Non-contact, optical time-resolved terahertz spectroscopy (TRTS) has been used to study the transient photoconductivity of nanometer-scale metallic films deposited on fused quartz substrates. Samples of 8 nm thick gold or titanium show an instrument-limited (ca. 0.5 ps) decrease in conductivity following photoexcitation due to electron-phonon coupling and subsequent increased lattice temperatures which increases charge carrier scattering. In contrast, for samples of 8 nm gold with a 4 nm adhesion layer of titanium or chromium, a ca. 70 ps rise time for the lattice temperature increase is observed. These results establish the increased transient terahertz transmission sign change of metallic compared to semiconductor materials. The results also suggest nanoscale gold films that utilize an adhesion material do not consist of distinct layers.
RESUMEN
Time-resolved terahertz spectroscopy (TRTS) was used to explore charge generation, transfer, and the role of hot carriers in organic solar cell materials. Two model molecular photovoltaic systems were investigated: with zinc phthalocyanine (ZnPc) or alpha-sexathiophene (α-6T) as the electron donors and buckminsterfullerene (C60) as the electron acceptor. TRTS provides charge carrier conductivity dynamics comprised of changes in both population and mobility. By using time-resolved optical spectroscopy in conjunction with TRTS, these two contributions can be disentangled. The sub-picosecond photo-induced conductivity decay dynamics of C60 were revealed to be caused by auto-ionization: the intrinsic process by which charge is generated in molecular solids. In donor-acceptor blends, the long-lived photo-induced conductivity is used for weight fraction optimization of the constituents. In nanoscale multilayer films, the photo-induced conductivity identifies optimal layer thicknesses. In films of ZnPc/C60, electron transfer from ZnPc yields hot charges that localize and become less mobile as they thermalize. Excitation of high-lying Franck Condon states in C60 followed by hole-transfer to ZnPc similarly produces hot charge carriers that self-localize; charge transfer clearly precedes carrier cooling. This picture is contrasted to charge transfer in α-6T/C60, where hole transfer takes place from a thermalized state and produces equilibrium carriers that do not show characteristic signs of cooling and self-localization. These results illustrate the value of terahertz spectroscopic methods for probing charge transfer reactions.
RESUMEN
Following an approach developed in our group to incorporate tetrathiafulvalene (TTF) units into conjugated polymeric systems, we have studied a low band gap polymer incorporating TTF as a donor component. This polymer is based on a fused thieno-TTF unit that enables the direct incorporation of the TTF unit into the polymer, and a second comonomer based on the diketopyrrolopyrrole (DPP) molecule. These units represent a donor-acceptor copolymer system, p(DPP-TTF), showing strong absorption in the UV-visible region of the spectrum. An optimized p(DPP-TTF) polymer organic field effect transistor and a single material organic solar cell device showed excellent performance with a hole mobility of up to 5.3 × 10(-2) cm(2)/(V s) and a power conversion efficiency (PCE) of 0.3%, respectively. Bulk heterojunction organic photovoltaic devices of p(DPP-TTF) blended with phenyl-C71-butyric acid methyl ester (PC71BM) exhibited a PCE of 1.8%.