Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(15): 11988-12002, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38573315

RESUMEN

Ionic liquid crystals (ILCs) combine the ion mobility of ionic liquids with the order and self-assembly of thermotropic mesophases. To understand the role of the anion in ILCs, wedge-shaped arylguanidinium salts with tetradecyloxy side chains were chosen as benchmark systems and their liquid crystalline self-assembly in the bulk phase as well as their electrochemical behavior in solution were studied depending on the anion. Differential scanning calorimetry (DSC), polarizing optical microscopy (POM) and X-ray diffraction (WAXS, SAXS) experiments revealed that for spherical anions, the phase width of the hexagonal columnar mesophase increased with the anion size, while for non-spherical anions, the trends were less clear cut. Depending on the anion, the ILCs showed different stability towards electrochemical oxidation and reduction with the most stable being the PF6 based compound. Cyclic voltammetry (CV) and density functional theory (DFT) calculations suggest a possible contribution of the guanidinium cation to the oxidation processes.

2.
J Phys Chem Lett ; 15(12): 3376-3382, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38498994

RESUMEN

Over the years, numerous experimental and theoretical efforts have been dedicated to investigating the mysteries of water and determining its new unexplored physical properties. Despite this, high-pressure studies of water and aqueous mixtures close to the glass transition still represent an unknown area of research. Herein, we address a fundamental issue: the validity of the density scaling concept for fast water dynamics. For this purpose, we performed ambient and high-pressure dielectric measurements of a supercooled equimolar aqueous mixture of an acidic ionic liquid. All isothermal and isobaric relaxation data describing the time scale of charge transport (τσ) and fast dynamics within the water clusters (τν) reveal visual evidence of a liquid-glass transition. Furthermore, both relaxation processes satisfy the ργ/T scaling concept with a single exponent γ = 0.58. Thus, the scaling exponent is a state-point-independent parameter for the dynamics of water clusters confined in ionic liquid investigated in the pressure range up to 300 MPa.

3.
ACS Appl Mater Interfaces ; 13(26): 30614-30624, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34164974

RESUMEN

The use of acidic ionic liquids and solids as electrolytes in fuel cells is an emerging field due to their efficient proton conductivity and good thermal stability. Despite multiple reports describing conducting properties of acidic ILs, little is known on the charge-transport mechanism in the vicinity of liquid-glass transition and the structural factors governing the proton hopping. To address these issues, we studied two acidic imidazolium-based ILs with the same cation, however, different anions-bulk tosylate vs small methanesulfonate. High-pressure dielectric studies of anhydrous and water-saturated materials performed in the close vicinity of Tg have revealed significant differences in the charge-transport mechanism in these two systems being undetectable at ambient conditions. Thereby, we demonstrated the effect of molecular architecture on proton hopping, being crucial in the potential electrochemical applications of acidic ILs.

4.
Chempluschem ; 87(1): e202100397, 2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34931472

RESUMEN

Ionic liquid crystals (ILCs), that is, ionic liquids exhibiting mesomorphism, liquid crystalline phases, and anisotropic properties, have received intense attention in the past years. Among others, this is due to their special properties arising from the combination of properties stemming from ionic liquids and from liquid crystalline arrangements. Besides interesting fundamental aspects, ILCs have been claimed to have tremendous application potential that again arises from the combination of properties and architectures that are not accessible otherwise, or at least not accessible easily by other strategies. The current review highlights recent developments in ILC research, starting with some key fundamental aspects. Further subjects covered include the synthesis and variations of modern ILCs, including the specific tuning of their mesomorphic behavior. The review concludes with reflections on some applications that may be within reach for ILCs and finally highlights a few key challenges that must be overcome prior and during true commercialization of ILCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA