Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(36): e2207190119, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36037354

RESUMEN

Mercaptoethane sulfonate or coenzyme M (CoM) is the smallest known organic cofactor and is most commonly associated with the methane-forming step in all methanogenic archaea but is also associated with the anaerobic oxidation of methane to CO2 in anaerobic methanotrophic archaea and the oxidation of short-chain alkanes in Syntrophoarchaeum species. It has also been found in a small number of bacteria capable of the metabolism of small organics. Although many of the steps for CoM biosynthesis in methanogenic archaea have been elucidated, a complete pathway for the biosynthesis of CoM in archaea or bacteria has not been reported. Here, we present the complete CoM biosynthesis pathway in bacteria, revealing distinct chemical steps relative to CoM biosynthesis in methanogenic archaea. The existence of different pathways represents a profound instance of convergent evolution. The five-step pathway involves the addition of sulfite, the elimination of phosphate, decarboxylation, thiolation, and the reduction to affect the sequential conversion of phosphoenolpyruvate to CoM. The salient features of the pathway demonstrate reactivities for members of large aspartase/fumarase and pyridoxal 5'-phosphate-dependent enzyme families.


Asunto(s)
Bacterias , Coenzimas , Euryarchaeota , Mesna , Anaerobiosis , Archaea/metabolismo , Bacterias/metabolismo , Coenzimas/biosíntesis , Euryarchaeota/metabolismo , Mesna/metabolismo , Metano/metabolismo , Oxidación-Reducción , Fosfatos/metabolismo
2.
Biochemistry ; 59(17): 1661-1664, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32293167

RESUMEN

Monoterpene synthases catalyze the first committed step in the biosynthesis of monoterpenes and are in part responsible for the enormous structural diversity among this class of metabolites. Here, we explore the structure-function relationships underlying the formation of limonene enantiomers in limonene synthases that bind geranyl diphosphate as a common substrate. On the basis of analyses that consider both crystal structure data and amino acid sequence divergence, we identified candidate active site residues with potential roles in catalyzing reactions that involve accommodating reaction intermediates of opposite enantiomeric series. We demonstrate that spearmint (-)-limonene synthase [which generates >99% (-)-limonene over (+)-limonene] can be converted into a mutant enzyme, by exchanging four residues (C321S, N345I, I453V, and M458V), which produces (+)-limonene with reversed enantiospecificity [80% (+)-limonene and 3% (-)-limonene; the remainder are mostly bicyclic monoterpenes]. This study provides the foundation for a more in-depth understanding of the formation of enantiomeric series of monoterpenes, which can have vastly different olfactory properties.


Asunto(s)
Liasas Intramoleculares/metabolismo , Secuencia de Aminoácidos , Liasas Intramoleculares/química , Liasas Intramoleculares/genética , Modelos Moleculares , Mutación , Conformación Proteica , Estereoisomerismo , Especificidad por Sustrato
3.
Plant Physiol ; 180(4): 1877-1897, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31138625

RESUMEN

Glandular trichomes are specialized anatomical structures that accumulate secretions with important biological roles in plant-environment interactions. These secretions also have commercial uses in the flavor, fragrance, and pharmaceutical industries. The capitate-stalked glandular trichomes of Cannabis sativa (cannabis), situated on the surfaces of the bracts of the female flowers, are the primary site for the biosynthesis and storage of resins rich in cannabinoids and terpenoids. In this study, we profiled nine commercial cannabis strains with purportedly different attributes, such as taste, color, smell, and genetic origin. Glandular trichomes were isolated from each of these strains, and cell type-specific transcriptome data sets were acquired. Cannabinoids and terpenoids were quantified in flower buds. Statistical analyses indicated that these data sets enable the high-resolution differentiation of strains by providing complementary information. Integrative analyses revealed a coexpression network of genes involved in the biosynthesis of both cannabinoids and terpenoids from imported precursors. Terpene synthase genes involved in the biosynthesis of the major monoterpenes and sesquiterpenes routinely assayed by cannabis testing laboratories were identified and functionally evaluated. In addition to cloning variants of previously characterized genes, specifically CsTPS14CT [(-)-limonene synthase] and CsTPS15CT (ß-myrcene synthase), we functionally evaluated genes that encode enzymes with activities not previously described in cannabis, namely CsTPS18VF and CsTPS19BL (nerolidol/linalool synthases), CsTPS16CC (germacrene B synthase), and CsTPS20CT (hedycaryol synthase). This study lays the groundwork for developing a better understanding of the complex chemistry and biochemistry underlying resin accumulation across commercial cannabis strains.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Cannabinoides/metabolismo , Cannabis/metabolismo , Proteínas de Plantas/metabolismo , Terpenos/metabolismo , Transferasas Alquil y Aril/genética , Cannabis/genética , Proteínas de Plantas/genética , Tricomas/genética
4.
J Exp Bot ; 71(14): 4109-4124, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32296842

RESUMEN

Isoprenoids constitute the largest class of plant natural products and have diverse biological functions including in plant growth and development. In potato (Solanum tuberosum), the regulatory mechanism underlying the biosynthesis of isoprenoids through the mevalonate pathway is unclear. We assessed the role of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) homologs in potato development and in the metabolic regulation of isoprenoid biosynthesis by generating transgenic lines with down-regulated expression (RNAi-hmgr) or overexpression (OE) of one (StHMGR1 or StHMGR3) or two genes, HMGR and farnesyl diphosphate synthase (FPS; StHMGR1/StFPS1 or StHMGR3/StFPS1). Levels of sterols, steroidal glycoalkaloids (SGAs), and plastidial isoprenoids were elevated in the OE-HMGR1, OE-HMGR1/FPS1, and OE-HMGR3/FPS1 lines, and these plants exhibited early flowering, increased stem height, increased biomass, and increased total tuber weight. However, OE-HMGR3 lines showed dwarfism and had the highest sterol amounts, but without an increase in SGA levels, supporting a rate-limiting role for HMGR3 in the accumulation of sterols. Potato RNAi-hmgr lines showed inhibited growth and reduced cytosolic isoprenoid levels. We also determined the relative importance of transcriptional control at regulatory points of isoprenoid precursor biosynthesis by assessing gene-metabolite correlations. These findings provide novel insights into specific end-products of the sterol pathway and could be important for crop yield and bioenergy crops.


Asunto(s)
Solanum tuberosum , Biomasa , Hidroximetilglutaril-CoA Reductasas/genética , Solanum tuberosum/genética , Esteroles , Terpenos
5.
J Exp Bot ; 70(1): 217-230, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30312429

RESUMEN

The shoot system of pines contains abundant resin ducts, which harbor oleoresins that play important roles in constitutive and inducible defenses. In a pilot study, we assessed the chemical diversity of oleoresins obtained from mature tissues of loblolly pine trees (Pinus taeda L.). Building on these data sets, we designed experiments to assess oleoresin biosynthesis in needles of 2-year-old saplings. Comparative transcriptome analyses of single cell types indicated that genes involved in the biosynthesis of oleoresins are significantly enriched in isolated epithelial cells of resin ducts, compared with those expressed in mesophyll cells. Simulations using newly developed genome-scale models of epithelial and mesophyll cells, which incorporate our data on oleoresin yield and composition as well as gene expression patterns, predicted that heterotrophic metabolism in epithelial cells involves enhanced levels of oxidative phosphorylation and fermentation (providing redox and energy equivalents). Furthermore, flux was predicted to be more evenly distributed across the metabolic network of mesophyll cells, which, in contrast to epithelial cells, do not synthesize high levels of specialized metabolites. Our findings provide novel insights into the remarkable specialization of metabolism in epithelial cells.


Asunto(s)
Pinus taeda/metabolismo , Extractos Vegetales/biosíntesis , Proteínas de Plantas/metabolismo , Transcriptoma , Perfilación de la Expresión Génica , Genes de Plantas , Proyectos Piloto , Extractos Vegetales/química , Hojas de la Planta/metabolismo
6.
Plant Physiol ; 175(2): 681-695, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28838953

RESUMEN

The commercially important essential oils of peppermint (Mentha × piperita) and its relatives in the mint family (Lamiaceae) are accumulated in specialized anatomical structures called glandular trichomes (GTs). A genome-scale stoichiometric model of secretory phase metabolism in peppermint GTs was constructed based on current biochemical and physiological knowledge. Fluxes through the network were predicted based on metabolomic and transcriptomic data. Using simulated reaction deletions, this model predicted that two processes, the regeneration of ATP and ferredoxin (in its reduced form), exert substantial control over flux toward monoterpenes. Follow-up biochemical assays with isolated GTs indicated that oxidative phosphorylation and ethanolic fermentation were active and that cooperation to provide ATP depended on the concentration of the carbon source. We also report that GTs with high flux toward monoterpenes express, at very high levels, genes coding for a unique pair of ferredoxin and ferredoxin-NADP+ reductase isoforms. This study provides, to our knowledge, the first evidence of how bioenergetic processes determine flux through monoterpene biosynthesis in GTs.


Asunto(s)
Vías Biosintéticas , Metabolismo Energético , Mentha piperita/metabolismo , Monoterpenos/metabolismo , Aceites Volátiles/metabolismo , Tricomas/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Carbono/metabolismo , Simulación por Computador , Ferredoxinas/metabolismo , Mentha piperita/química , Modelos Moleculares , Fosforilación Oxidativa , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Alineación de Secuencia , Tricomas/química
7.
Plant Physiol ; 173(1): 456-469, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27864443

RESUMEN

Members of the genus Tripterygium are known to contain an astonishing diversity of specialized metabolites. The lack of authentic standards has been an impediment to the rapid identification of such metabolites in extracts. We employed an approach that involves the searching of multiple, complementary chromatographic and spectroscopic data sets against the Spektraris database to speed up the metabolite identification process. Mass spectrometry-based imaging indicated a differential localization of triterpenoids to the periderm and sesquiterpene alkaloids to the cortex layer of Tripterygium roots. We further provide evidence that triterpenoids are accumulated to high levels in cells that contain suberized cell walls, which might indicate a mechanism for storage. To our knowledge, our data provide first insights into the cell type specificity of metabolite accumulation in Tripterygium and set the stage for furthering our understanding of the biological implications of specialized metabolites in this genus.


Asunto(s)
Metabolómica/métodos , Raíces de Plantas/metabolismo , Tripterygium/metabolismo , Alcaloides/análisis , Alcaloides/metabolismo , Bases de Datos Factuales , Procesamiento de Imagen Asistido por Computador , Células Vegetales/química , Células Vegetales/metabolismo , Extractos Vegetales/análisis , Extractos Vegetales/química , Raíces de Plantas/química , Sesquiterpenos/análisis , Sesquiterpenos/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Tripterygium/química , Tripterygium/citología
8.
Plant Physiol ; 175(1): 92-103, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28751314

RESUMEN

Adventitious root cultures were developed from Tripterygium regelii, and growth conditions were optimized for the abundant production of diterpenoids, which can be collected directly from the medium. An analysis of publicly available transcriptome data sets collected with T. regelii roots and root cultures indicated the presence of a large gene family (with 20 members) for terpene synthases (TPSs). Nine candidate diterpene synthase genes were selected for follow-up functional evaluation, of which two belonged to the TPS-c, three to the TPS-e/f, and four to the TPS-b subfamilies. These genes were characterized by heterologous expression in a modular metabolic engineering system in Escherichia coli Members of the TPS-c subfamily were characterized as copalyl diphosphate (diterpene) synthases, and those belonging to the TPS-e/f subfamily catalyzed the formation of precursors of kaurane diterpenoids. The TPS-b subfamily encompassed genes coding for enzymes involved in abietane diterpenoid biosynthesis and others with activities as monoterpene synthases. The structural characterization of diterpenoids accumulating in the medium of T. regelii adventitious root cultures, facilitated by searching the Spektraris online spectral database, enabled us to formulate a biosynthetic pathway for the biosynthesis of triptolide, a diterpenoid with pharmaceutical potential. Considering the significant enrichment of diterpenoids in the culture medium, fast-growing adventitious root cultures may hold promise as a sustainable resource for the large-scale production of triptolide.


Asunto(s)
Técnicas de Cultivo , Diterpenos/metabolismo , Fenantrenos/metabolismo , Raíces de Plantas/metabolismo , Tripterygium/metabolismo , Compuestos Epoxi/metabolismo
9.
Proc Natl Acad Sci U S A ; 112(11): 3332-7, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25733883

RESUMEN

Crystal structural data for (4S)-limonene synthase [(4S)-LS] of spearmint (Mentha spicata L.) were used to infer which amino acid residues are in close proximity to the substrate and carbocation intermediates of the enzymatic reaction. Alanine-scanning mutagenesis of 48 amino acids combined with enzyme fidelity analysis [percentage of (-)-limonene produced] indicated which residues are most likely to constitute the active site. Mutation of residues W324 and H579 caused a significant drop in enzyme activity and formation of products (myrcene, linalool, and terpineol) characteristic of a premature termination of the reaction. A double mutant (W324A/H579A) had no detectable enzyme activity, indicating that either substrate binding or the terminating reaction was impaired. Exchanges to other aromatic residues (W324H, W324F, W324Y, H579F, H579Y, and H579W) resulted in enzyme catalysts with significantly reduced activity. Sequence comparisons across the angiosperm lineage provided evidence that W324 is a conserved residue, whereas the position equivalent to H579 is occupied by aromatic residues (H, F, or Y). These results are consistent with a critical role of W324 and H579 in the stabilization of carbocation intermediates. The potential of these residues to serve as the catalytic base facilitating the terminal deprotonation reaction is discussed.


Asunto(s)
Biocatálisis , Liasas Intramoleculares/genética , Modelos Biológicos , Mutación/genética , Alanina/genética , Mentha spicata/enzimología , Modelos Moleculares , Mutagénesis/genética , Proteínas Mutantes/metabolismo , Especificidad por Sustrato , Terpenos/química , Terpenos/metabolismo
10.
Planta ; 242(4): 921-33, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26007685

RESUMEN

MAIN CONCLUSION: Misexpression of the AtNPC1 - 1 and AtNPC1 - 2 genes leads to altered sphingolipid metabolism, growth impairment, and male reproductive defects in a hemizygous Arabidopsis thaliana (L.) double-mutant population. Abolishing the expression of both gene copies has lethal effects. Niemann-Pick disease type C1 is a lysosomal storage disorder caused by mutations in the NPC1 gene. At the cellular level, the disorder is characterized by the accumulation of storage lipids and lipid trafficking defects. The Arabidopsis thaliana genome contains two genes (At1g42470 and At4g38350) with weak homology to mammalian NPC1. The corresponding proteins have 11 predicted membrane-spanning regions and contain a putative sterol-sensing domain. The At1g42470 protein is localized to the plasma membrane, while At4g38350 protein has a dual localization in the plasma and tonoplast membranes. A phenotypic analysis of T-DNA insertion mutants indicated that At1g42470 and At4g38350 (designated AtNPC1-1 and AtNPC1-2, respectively) have partially redundant functions and are essential for plant reproductive viability and development. Homozygous plants impaired in the expression of both genes were not recoverable. Plants of a hemizygous AtNPC1-1/atnpc1-1/atnpc1-2/atnpc1-2 population were severely dwarfed and exhibited male gametophytic defects. These gene disruptions did not have an effect on sterol concentrations; however, hemizygous AtNPC1-1/atnpc1-1/atnpc1-2/atnpc1-2 mutants had increased fatty acid amounts. Among these, fatty acid α-hydroxytetracosanoic acid (h24:0) occurs in plant sphingolipids. Follow-up analyses confirmed the accumulation of significantly increased levels of sphingolipids (assayed as hydrolyzed sphingoid base component) in the hemizygous double-mutant population. Certain effects of NPC1 misexpression may be common across divergent lineages of eukaryotes (sphingolipid accumulation), while other defects (sterol accumulation) may occur only in certain groups of eukaryotic organisms.


Asunto(s)
Arabidopsis/genética , Proteínas Portadoras/genética , Glicoproteínas de Membrana/genética , Esfingolípidos/metabolismo , Secuencia de Aminoácidos , Proteínas Portadoras/química , Ácidos Grasos/metabolismo , Genes de Plantas , Péptidos y Proteínas de Señalización Intracelular , Glicoproteínas de Membrana/química , Datos de Secuencia Molecular , Proteína Niemann-Pick C1 , Homología de Secuencia de Aminoácido , Esteroles/metabolismo
11.
Plants (Basel) ; 13(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38337942

RESUMEN

Our recent investigations indicated that isoforms of ferredoxin (Fd) and ferredoxin NADP+ reductase (FNR) play essential roles for the reductive steps of the 2C-methyl-D-erythritol 4-phosphate (MEP) pathway of terpenoid biosynthesis in peppermint glandular trichomes (GTs). Based on an analysis of several transcriptome data sets, we demonstrated the presence of transcripts for a leaf-type FNR (L-FNR), a leaf-type Fd (Fd I), a root-type FNR (R-FNR), and two root-type Fds (Fd II and Fd III) in several members of the mint family (Lamiaceae). The present study reports on the biochemical characterization of all Fd and FNR isoforms of peppermint (Mentha × piperita L.). The redox potentials of Fd and FNR isoforms were determined using photoreduction methods. Based on a diaphorase assay, peppermint R-FNR had a substantially higher specificity constant (kcat/Km) for NADPH than L-FNR. Similar results were obtained with ferricyanide as an electron acceptor. When assayed for NADPH-cytochrome c reductase activity, the specificity constant with the Fd II and Fd III isoforms (when compared to Fd I) was slightly higher for L-FNR and substantially higher for R-FNR. Based on real-time quantitative PCR assays with samples representing various peppermint organs and cell types, the Fd II gene was expressed very highly in metabolically active GTs (but also present at lower levels in roots), whereas Fd III was expressed at low levels in both roots and GTs. Our data provide evidence that high transcript levels of Fd II, and not differences in the biochemical properties of the encoded enzyme when compared to those of Fd III, are likely to support the formation of copious amounts of monoterpene via the MEP pathway in peppermint GTs. This work has laid the foundation for follow-up studies to further investigate the roles of a unique R-FNR-Fd II pair in non-photosynthetic GTs of the Lamiaceae.

12.
Plant Biotechnol J ; 11(2): 169-96, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23171352

RESUMEN

Terpenoids (a.k.a. isoprenoids) represent the most diverse class of natural products found in plants, with tens of thousands of reported structures. Plant-derived terpenoids have a multitude of pharmaceutical and industrial applications, but the natural resources for their extraction are often limited and, in many cases, synthetic routes are not commercially viable. Some of the most valuable terpenoids are not accumulated in model plants or crops, and genetic resources for breeding of terpenoid natural product traits are thus poorly developed. At present, metabolic engineering, either in the native producer or a heterologous host, is the only realistic alternative to improve yield and accessibility. In this review article, we will evaluate the state of the art of modulating the biosynthetic pathways for the production of mono-, sesqui- and diterpenes in plants.


Asunto(s)
Diterpenos/metabolismo , Ingeniería Metabólica , Monoterpenos/metabolismo , Plantas/metabolismo , Sesquiterpenos/metabolismo , Artemisininas , Vías Biosintéticas , Herbivoria , Odorantes , Aceites Volátiles/metabolismo , Paclitaxel , Compuestos Orgánicos Volátiles/metabolismo
13.
Plant Biotechnol J ; 11(1): 2-22, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22979959

RESUMEN

Glandular trichomes are anatomical structures specialized for the synthesis of secreted natural products. In this review we focus on the description of glands that accumulate terpenoid essential oils and oleoresins. We also provide an in-depth account of the current knowledge about the biosynthesis of terpenoids and secretion mechanisms in the highly specialized secretory cells of glandular trichomes, and highlight the implications for metabolic engineering efforts.


Asunto(s)
Aceites Volátiles/metabolismo , Células Vegetales/metabolismo , Epidermis de la Planta/metabolismo , Epidermis de la Planta/ultraestructura , Extractos Vegetales/biosíntesis , Terpenos/metabolismo , Biotecnología
14.
Plant Physiol ; 159(1): 81-94, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22452856

RESUMEN

Epithelial cells (ECs) lining the secretory cavities of Citrus peel have been hypothesized to be responsible for the synthesis of essential oil, but direct evidence for such a role is currently sparse. We used laser-capture microdissection and pressure catapulting to isolate ECs and parenchyma cells (as controls not synthesizing oil) from the peel of young grapefruit (Citrus × paradisi 'Duncan'), isolated RNA, and evaluated transcript patterns based on oligonucleotide microarrays. A Gene Ontology analysis of these data sets indicated an enrichment of genes involved in the biosynthesis of volatile terpenoids and nonvolatile phenylpropanoids in ECs (when compared with parenchyma cells), thus indicating a significant metabolic specialization in this cell type. The gene expression patterns in ECs were consistent with the accumulation of the major essential oil constituents (monoterpenes, prenylated coumarins, and polymethoxylated flavonoids). Morphometric analyses demonstrated that secretory cavities are formed early during fruit development, whereas the expansion of cavities, and thus oil accumulation, correlates with later stages of fruit expansion. Our studies have laid the methodological and experimental groundwork for a vastly improved knowledge of the as yet poorly understood processes controlling essential oil biosynthesis in Citrus peel.


Asunto(s)
Citrus paradisi/química , Aceites Volátiles/química , ARN de Planta/genética , Vías Secretoras , Citrus paradisi/genética , Citrus paradisi/crecimiento & desarrollo , Frutas/química , Frutas/genética , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Captura por Microdisección con Láser , Aceites Volátiles/análisis , Análisis de Secuencia por Matrices de Oligonucleótidos , Células Vegetales/química , Aceites de Plantas/análisis , Aceites de Plantas/química , Terpenos/análisis , Terpenos/química , Transcripción Genética
15.
Methods Enzymol ; 680: 381-419, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36710020

RESUMEN

Terpenes are the primary determinants of cannabis flower aroma, and ongoing research tests their potential for impacting the overall experience. Frustratingly, despite the importance of terpenes in cannabis physiology and commercial uses, literature reports vary widely regarding the major constituents of volatile blends and the concentrations of individual terpenes. In this article, we provide detailed descriptions of complementary approaches that will allow researchers to determine the identity and quantity of cannabis terpenes unequivocally and reliably. These standard operating procedures will guide decisions about which method to employ to address specific analytical goals. We are including two application examples to illustrate the utility of different approaches for tackling the analysis of terpenes in cannabis flower samples.


Asunto(s)
Cannabis , Terpenos , Cromatografía de Gases y Espectrometría de Masas/métodos , Microextracción en Fase Sólida/métodos , Agonistas de Receptores de Cannabinoides
16.
Methods Enzymol ; 680: 353-380, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36710019

RESUMEN

The cannabis (Cannabis sativa L.) genome is highly heterozygous and, to retain genetic identity, clonal propagation of cultivars is very common. Establishing controlled environments, often involving multiple locations throughout a single grow, is critical for reliably generating materials to be used in research and production. In this article, we break down different periods of the grow cycle, such as cloning, hardening (optional), vegetative growth, flowering growth, and harvest, into individual steps. We are including images and videos for an in-depth coverage of methodological details. We are providing a list of equipment, supplies, reagents, and other resources to help with planning a grow experiment. Finally, we are discussing considerations for different aspects of controlled environments, including lighting, fertilizer regimes, and integrated pest management. With this article, it is our goal to empower researchers to reliably generate disease-free cannabis material suitable for genetic and biochemical studies that require full control of environmental factors.


Asunto(s)
Cannabis , Cannabis/genética , Ambiente Controlado , Iluminación
17.
Front Plant Sci ; 14: 1125065, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37123862

RESUMEN

Above-ground material of members of the mint family is commercially distilled to extract essential oils, which are then formulated into a myriad of consumer products. Most of the research aimed at characterizing the processes involved in the formation of terpenoid oil constituents has focused on leaves. We now demonstrate, by investigating three mint species, peppermint (Mentha Ë£ piperita L.), spearmint (Mentha spicata L.) and horsemint (Mentha longifolia (L.) Huds.; accessions CMEN 585 and CMEN 584), that other organs - namely stems, rhizomes and roots - also emit volatiles and that the terpenoid volatile composition of these organs can vary substantially from that of leaves, supporting the notion that substantial, currently underappreciated, chemical diversity exists. Differences in volatile quantities released by plants whose roots had been dipped in a Verticillium dahliae-spore suspension (experimental) or dipped in water (controls) were evident: increases of some volatiles in the root headspace of mint species that are susceptible to Verticillium wilt disease (peppermint and M. longifolia CMEN 584) were detected, while the quantities of certain volatiles decreased in rhizomes of species that show resistance to the disease (spearmint and M. longifolia CMEN 585). To address the genetic and biochemical basis underlying chemical diversity, we took advantage of the newly sequenced M. longifolia CMEN 585 genome to identify candidate genes putatively coding for monoterpene synthases (MTSs), the enzymes that catalyze the first committed step in the biosynthesis of monoterpenoid volatiles. The functions of these genes were established by heterologous expression in Escherichia coli, purification of the corresponding recombinant proteins, and enzyme assays, thereby establishing the existence of MTSs with activities to convert a common substrate, geranyl diphosphate, to (+)-α-terpineol, 1,8-cineole, γ-terpinene, and (-)-bornyl diphosphate, but were not active with other potential substrates. In conjunction with previously described MTSs that catalyze the formation of (-)-ß-pinene and (-)-limonene, the product profiles of the MTSs identified here can explain the generation of all major monoterpene skeletons represented in the volatiles released by different mint organs.

18.
Planta ; 235(5): 939-54, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22109846

RESUMEN

The repeated removal of flower, fruit, or vegetative buds is a common treatment to simulate sink limitation. These experiments usually lead to the accumulation of specific proteins, which are degraded during later stages of seed development, and have thus been designated as vegetative storage proteins. We used oligonucleotide microarrays to assess global effects of sink removal on gene expression patterns in soybean leaves and found an induction of the transcript levels of hundreds of genes with putative roles in the responses to biotic and abiotic stresses. In addition, these data sets indicated potential changes in amino acid and phenylpropanoid metabolism. As a response to sink removal we detected an induced accumulation of γ-aminobutyric acid, while proteinogenic amino acid levels decreased. We also observed a shift in phenylpropanoid metabolism with an increase in isoflavone levels, concomitant with a decrease in flavones and flavonols. Taken together, we provide evidence that sink removal leads to an up-regulation of stress responses in distant leaves, which needs to be considered as an unintended consequence of this experimental treatment.


Asunto(s)
Aminoácidos/metabolismo , Glycine max/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/metabolismo , Propanoles/metabolismo , Estrés Fisiológico/fisiología , Adaptación Fisiológica , Secuestro de Carbono/fisiología , Productos Agrícolas/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Análisis de Secuencia por Matrices de Oligonucleótidos , Hojas de la Planta/genética , Regulación hacia Arriba , Ácido gamma-Aminobutírico/biosíntesis
19.
Plant Sci ; 314: 111119, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34895548

RESUMEN

Peppermint (Mentha x piperita L.) and Japanese catnip (Schizonepeta tenuifolia (Benth.) Briq.) accumulate p-menthane monoterpenoids with identical functionalization patterns but opposite stereochemistry. In the present study, we investigate the enantioselectivity of multiple enzymes involved in monoterpenoid biosynthesis in these species. Based on kinetic assays, mint limonene synthase, limonene 3-hydroxylase, isopiperitenol dehydrogenase, isopiperitenone reductase, and menthone reductase exhibited significant enantioselectivity toward intermediates of the pathway that proceeds through (-)-4S-limonene. Limonene synthase, isopiperitenol dehydrogenase and isopiperitenone reductase of Japanese catnip preferred intermediates of the pathway that involves (+)-4R-limonene, whereas limonene 3-hydroxylase was not enantioselective, and the activities of pulegone reductase and menthone reductase were too low to acquire meaningful kinetic data. Molecular modeling studies with docked ligands generally supported the experimental data obtained with peppermint enzymes, indicating that the preferred enantiomer was aligned well with the requisite cofactor and amino acid residues implicated in catalysis. A striking example for enantioselectivity was peppermint (-)-menthone reductase, which binds (-)-menthone with exquisite affinity but was predicted to bind (+)-menthone in a non-productive orientation that positions its carbonyl functional group at considerable distance to the NADPH cofactor. The work presented here lays the groundwork for structure-function studies aimed at unraveling how enantioselectivity evolved in closely related species of the Lamiaceae and beyond.


Asunto(s)
Lamiaceae/enzimología , Mentha piperita/enzimología , Oxigenasas de Función Mixta/metabolismo , Monoterpenos/metabolismo , Oxidorreductasas/metabolismo , Estereoisomerismo , Estructura Molecular
20.
G3 (Bethesda) ; 12(8)2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35551385

RESUMEN

Mentha longifolia (L.) Huds., a wild, diploid mint species, has been developed as a model for mint genetic and genomic research to aid breeding efforts that target Verticillium wilt disease resistance and essential oil monoterpene composition. Here, we present a near-complete, chromosome-scale mint genome assembly for M. longifolia USDA accession CMEN 585. This new assembly is an update of a previously published genome draft, with dramatic improvements. A total of 42,107 protein-coding genes were annotated and placed on 12 chromosomal scaffolds. One hundred fifty-three genes contained conserved sequence domains consistent with nucleotide binding site-leucine-rich-repeat plant disease resistance genes. Homologs of genes implicated in Verticillium wilt resistance in other plant species were also identified. Multiple paralogs of genes putatively involved in p-menthane monoterpenoid biosynthesis were identified and several cases of gene clustering documented. Heterologous expression of candidate genes, purification of recombinant target proteins, and subsequent enzyme assays allowed us to identify the genes underlying the pathway that leads to the most abundant monoterpenoid volatiles. The bioinformatic and functional analyses presented here are laying the groundwork for using marker-assisted selection in improving disease resistance and essential oil traits in mints.


Asunto(s)
Mentha , Aceites Volátiles , Verticillium , Cromosomas , Resistencia a la Enfermedad/genética , Mentha/química , Mentha/genética , Mentha/metabolismo , Monoterpenos/análisis , Monoterpenos/metabolismo , Aceites Volátiles/metabolismo , Fitomejoramiento , Verticillium/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA