Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Molecules ; 26(9)2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33926135

RESUMEN

Both condensed and hydrolysable tannins represent versatile natural polyphenolic structures exhibiting a broad range of activities that could be exploited in various fields including nutraceutics, cosmesis, consumer care, household and pharmaceutical applications. Various tannins are commercially available nowadays for use in such application fields. We have analysed a representative selection of commercially available condensed and hydrolysable tannins for structural features and purity. Using a combination of quantitative 31P NMR spectroscopy, HSQC measurements, MALDI-ToF analyses, gel permeation chromatography and wet chemical analysis, detailed structural characterisations and descriptions were possible, allowing for verification and falsification of claimed structural features.


Asunto(s)
Taninos/química , Taninos Hidrolizables/química , Taninos Hidrolizables/aislamiento & purificación , Espectroscopía de Resonancia Magnética , Estructura Molecular , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Relación Estructura-Actividad , Taninos/aislamiento & purificación
2.
Molecules ; 25(4)2020 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-32079068

RESUMEN

Thymol and the corresponding brominated derivatives constitute important biological active molecules as antibacterial, antioxidant, antifungal, and antiparasitic agents. However, their application is often limited, because their pronounced fragrance, their poor solubility in water, and their high volatility. The encapsulation of different thymol derivatives into biocompatible lignin-microcapsules is presented as a synergy-delivering remedy. The adoption of lignosulfonate as an encapsulating material possessing relevant antioxidant activity, as well as general biocompatibility allows for the development of new materials that are suitable for the application in various fields, especially cosmesis. To this purpose, lignin microcapsules containing thymol, 4-bromothymol, 2,4-dibromothymol, and the corresponding O-methylated derivatives have been efficiently prepared through a sustainable ultrasonication procedure. Actives could be efficiently encapsulated with efficiencies of up to 50%. To evaluate the applicability of such systems for topical purposes, controlled release experiments have been performed in acetate buffer at pH 5.4, to simulate skin pH: all of the capsules show a slow release of actives, which is strongly determined by their inherent lipophilicity.


Asunto(s)
Antiinfecciosos/farmacología , Antioxidantes/farmacología , Cápsulas/química , Preparaciones de Acción Retardada/síntesis química , Lignina/análogos & derivados , Timol/farmacología , Animales , Antiinfecciosos/química , Antioxidantes/química , Tampones (Química) , Composición de Medicamentos/métodos , Liberación de Fármacos , Halogenación , Humanos , Concentración de Iones de Hidrógeno , Cinética , Lignina/química , Tamaño de la Partícula , Solubilidad , Soluciones , Sonicación , Timol/química
3.
Molecules ; 25(2)2020 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-31968654

RESUMEN

Eucalyptus nitens wood samples were subjected to consecutive stages of hydrothermal processing for hemicellulose solubilization and delignification with an ionic liquid, i.e., either 1-butyl-3-methylimidazolium hydrogen sulfate or triethylammonium hydrogen sulfate. Delignification experiments were carried out a 170 C for 10-50 min. The solid phases from treatments, i.e., cellulose-enriched solids, were recovered by centrifugation, and lignin was separated from the ionic liquid by water precipitation. The best delignification conditions were identified on the basis of the results determined for delignification percentage, lignin recovery yield, and cellulose recovery in solid phase. The lignins obtained under selected conditions were characterized in deep by 31P-NMR, 13C-NMR, HSQC, and gel permeation chromatography. The major structural features of the lignins were discussed in comparison with the results determined for a model Ionosolv lignin.


Asunto(s)
Eucalyptus/química , Líquidos Iónicos/química , Lignina/química , Cromatografía en Gel , Hidrólisis , Espectroscopía de Resonancia Magnética
4.
Langmuir ; 35(31): 10116-10127, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31042396

RESUMEN

Phase change contrast agents for ultrasound (US) imaging consist of nanodroplets (NDs) with a perfluorocarbon (PFC) liquid core stabilized with a lipid or a polymer shell. Liquid ↔ gas transition, occurring in the core, can be triggered by US to produce acoustically active microbubbles (MBs) in a process named acoustic droplet vaporization (ADV). MB shells containing polymerized diacetylene moiety were considered as a good trade off between the lipid MBs, showing optimal attenuation, and the polymeric ones, displaying enhanced stability. This work reports on novel perfluoropentane and perfluorobutane NDs stabilized with a monolayer of an amphiphilic fatty acid, i.e. 10,12-pentacosadiynoic acid (PCDA), cured with ultraviolet (UV) irradiation. The photopolymerization of the diacetylene groups, evidenced by the appearance of a blue color due to the conjugation of ene-yne sequences, exhibits a chromatic transition from the nonfluorescent blue color to a fluorescent red color when the NDs are heated or the pH of the suspension is basic. An estimate of the molecular weights reached by the polymerized PCDA in the shell, poly(PCDA), has been obtained using gel permeation chromatography and MALDI-TOF mass spectrometry. The poly(PCDA)/PFC NDs show good biocompatibility with fibroblast cells. ADV efficiency and acoustic properties before and after the transition were tested using a 1 MHz probe, revealing a resonance frequency between 1 and 2 MHz similar to other lipidic MBs. The surface of PCDA shelled NDs can be easily modified without influencing the stability and the acoustic performances of droplets. As a proof of concept we report on the conjugation of cyclic RGD and PEG chains of the particles to support targeting ability toward endothelial cells.

5.
J Nat Prod ; 79(9): 2287-95, 2016 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-27551744

RESUMEN

The chemical composition of Acacia catechu, Schinopsis balansae, and Acacia mearnsii proanthocyanidins has been determined using a novel analytical approach that rests on the concerted use of quantitative (31)P NMR and two-dimensional heteronuclear NMR spectroscopy. This approach has offered significant detailed information regarding the structure and purity of these complex and often elusive proanthocyanidins. More specifically, rings A, B, and C of their flavan-3-ol units show well-defined and resolved absorbance regions in both the quantitative (31)P NMR and HSQC spectra. By integrating each of these regions in the (31)P NMR spectra, it is possible to identify the oxygenation patterns of the flavan-3-ol units. At the same time it is possible to acquire a fingerprint of the proanthocyanidin sample and evaluate its purity via the HSQC information. This analytical approach is suitable for both the purified natural product proanthocyanidins and their commercial analogues. Overall, this effort demonstrates the power of the concerted use of these two NMR techniques for the structural elucidation of natural products containing labile hydroxy protons and a carbon framework that can be traced out via HSQC.


Asunto(s)
Acacia/química , Taninos/aislamiento & purificación , Acacia/genética , Algoritmos , Argentina , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Paraguay , Taninos/química , Tanzanía
6.
Biomacromolecules ; 16(9): 2979-89, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26288366

RESUMEN

A pH- and light-responsive polymer has been synthesized from softwood kraft lignin by a two-step strategy that aimed to incorporate diazobenzene groups. Initially, styrene oxide was reacted with the phenolic hydroxyl groups in lignin, to offer the attachment of benzene rings, thus creating unhindered reactive sites for further modifications. The use of advanced spectroscopic techniques ((1)H and (31)P NMR, UV and FTIR) demonstrated that the reaction was quantitative and selective toward the phenolic hydroxyl groups. In a second step, the newly incorporated benzene rings were reacted with a diazonium cation to form the target diazobenzene motif, whose formation was again thoroughly verified. As anticipated, the diazobenzene-containing kraft lignin derivatives showed a pH-dependent color change in solution and light-responsive properties resulting from the cis-trans photoisomerization of the diazobenzene group.


Asunto(s)
Benceno/química , Luz , Lignina/química , Procesos Fotoquímicos , Concentración de Iones de Hidrógeno
7.
Anal Chem ; 86(15): 7478-85, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-24983331

RESUMEN

This paper demonstrates that the gas-filled compartments in the packing material commonly called "bubble wrap" can be repurposed in resource-limited regions as containers to store liquid samples, and to perform bioanalyses. The bubbles of bubble wrap are easily filled by injecting the samples into them using a syringe with a needle or a pipet tip, and then sealing the hole with nail hardener. The bubbles are transparent in the visible range of the spectrum, and can be used as "cuvettes" for absorbance and fluorescence measurements. The interiors of these bubbles are sterile and allow storage of samples without the need for expensive sterilization equipment. The bubbles are also permeable to gases, and can be used to culture and store micro-organisms. By incorporating carbon electrodes, these bubbles can be used as electrochemical cells. This paper demonstrates the capabilities of the bubbles by culturing E. coli, growing C. elegans, measuring glucose and hemoglobin spectrophotometrically, and measuring ferrocyanide electrochemically, all within the bubbles.


Asunto(s)
Plásticos , Manejo de Especímenes/instrumentación , Manejo de Especímenes/métodos
8.
Angew Chem Int Ed Engl ; 53(19): 4915-20, 2014 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-24729438

RESUMEN

Over the past decade, the integration of synthetic chemistry with flow processing has resulted in a powerful platform for molecular assembly that is making an impact throughout the chemical community. Herein, we demonstrate the extension of these tools to encompass complex natural product synthesis. We have developed a number of novel flow-through processes for reactions commonly encountered in natural product synthesis programs to achieve the first total synthesis of spirodienal A and the preparation of spirangien A methyl ester. Highlights of the synthetic route include an iridium-catalyzed hydrogenation, iterative Roush crotylations, gold-catalyzed spiroketalization and a late-stage cis-selective reduction.


Asunto(s)
Sintasas Poliquetidas/química , Ciclización
9.
ACS Sustain Chem Eng ; 12(4): 1666-1680, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38303908

RESUMEN

Beech sawdust was treated with a ternary solvent system based on binary aqueous ethanol with partial substitution of ethanol by acetone at four different water contents (60, 50, 40, and 30%v/v). In addition to standard, i.e., noncatalyzed treatments, the application of inorganic acid in the form of 20 mm H2SO4 was evaluated. The various solvent systems were applied at 180 °C for 60 min. The obtained biomass fractions were characterized by standard biomass compositional methods, i.e., sugar monomer and oligomer contents, dehydration product contents of the aqueous product, and lignin, cellulose, and hemicellulose contents in isolated solid fractions. More advanced analyses were performed on the lignin fractions, including quantitative 13C NMR analyses, 1H-13C HSQC analysis, size exclusion chromatography, and pyrolysis-GC/MS, and the aqueous product, in the form of size exclusion chromatography and determination of total phenol contents. The picture emerging from the thorough analytical investigation performed on the lignin fractions is consistent with that resulting from the characterization of the other fractions: results point toward greater deconstruction of the lignocellulosic recalcitrance upon higher organic solvent content, replacing ethanol with acetone during the extraction, and upon addition of mineral acid. A pulp with cellulose content of 94.23 wt % and 95% delignification was obtained for the treatment employing a 55/30/15 EtOH/water/acetone mixture alongside 20 mm H2SO4. Furthermore, the results indicate the formation of two types of organosolv furan families during treatment, which differ in the substitution of their C1 and C5. While the traditional lignin aryl-ether linkages present themselves as indicators for process severity for the nonacid catalyzed systems, the distribution of these furan types can be applied as a severity indicator upon employment of H2SO4, including their presence in the isolated lignin fractions.

10.
J Am Chem Soc ; 135(41): 15579-84, 2013 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-24044696

RESUMEN

The mechanism (or mechanisms) of enthalpy-entropy (H/S) compensation in protein-ligand binding remains controversial, and there are still no predictive models (theoretical or experimental) in which hypotheses of ligand binding can be readily tested. Here we describe a particularly well-defined system of protein and ligands--human carbonic anhydrase (HCA) and a series of benzothiazole sulfonamide ligands with different patterns of fluorination--that we use to define enthalpy/entropy (H/S) compensation in this system thermodynamically and structurally. The binding affinities of these ligands (with the exception of one ligand, in which the deviation is understood) to HCA are, despite differences in fluorination pattern, indistinguishable; they nonetheless reflect significant and compensating changes in enthalpy and entropy of binding. Analysis reveals that differences in the structure and thermodynamic properties of the waters surrounding the bound ligands are an important contributor to the observed H/S compensation. These results support the hypothesis that the molecules of water filling the active site of a protein, and surrounding the ligand, are as important as the contact interactions between the protein and the ligand for biomolecular recognition, and in determining the thermodynamics of binding.


Asunto(s)
Benzotiazoles/química , Anhidrasas Carbónicas/química , Sulfonamidas/química , Agua/química , Sitios de Unión , Anhidrasas Carbónicas/metabolismo , Humanos , Ligandos , Modelos Moleculares , Simulación de Dinámica Molecular , Estructura Molecular , Unión Proteica , Termodinámica
11.
Angew Chem Int Ed Engl ; 52(30): 7714-7, 2013 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-23788494

RESUMEN

It's the water that matters. Pairs of benzo- and perfluorobenzoarylsulfonamide ligands bind to human carbonic anhydrase with a conserved binding geometry, an enthalpy-driven binding, and indistinguishable binding affinities (see picture). These data support the pervasive theory that the lock-and-key model disregards an important component of binding: the water, which fills the binding pocket of the protein and surrounds the ligand.


Asunto(s)
Anhidrasas Carbónicas/metabolismo , Fluoruros/química , Sulfonamidas/metabolismo , Agua/metabolismo , Anhidrasas Carbónicas/química , Cristalografía por Rayos X , Halogenación , Humanos , Enlace de Hidrógeno , Modelos Químicos , Conformación Molecular , Estructura Molecular , Sulfonamidas/química , Agua/química , Bencenosulfonamidas
12.
Int J Biol Macromol ; 233: 123471, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36736515

RESUMEN

Organosolv lignins (OSLs) are important byproducts of the cellulose-centred biorefinery that need to be converted in high value-added products for economic viability. Yet, OSLs occasionally display characteristics that are unexpected looking at the lignin motifs present. Applying advanced NMR, GPC, and thermal analyses, isolated spruce lignins were analysed to correlate organosolv process severity to the structural details for delineating potential valorisations. Very mild conditions were found to not fractionate the biomass, causing a mix of sugars, lignin-carbohydrate complexes (LCCs), and corresponding dehydration/degradation products and including pseudo-lignins. Employing only slightly harsher conditions promote fractionation, but also formation of sugar degradation structures that covalently incorporate into the oligomeric and polymeric lignin structures, causing the isolated organosolv lignins to contain lignin-humin hybrid (HLH) structures not yet evidenced as such in organosolv lignins. These structures effortlessly explain observed unexpected solubility issues and unusual thermal responses, and their presence might have to be acknowledged in downstream lignin valorisation.


Asunto(s)
Lignina , Picea , Lignina/química , Celulosa , Espectroscopía de Resonancia Magnética , Azúcares
13.
Bioresour Technol ; 369: 128447, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36496118

RESUMEN

Lignocellulosic biomass is one of the most important renewable materials to replace carbon-based fossil resources. Solvent-based fractionation is a promising route for fractionation of biomass into its major components. Processing is governed by the employed solvent-systems properties. This review sheds light on the factors governing both dissolution and potential reactivities of the chemical structures present in lignocellulose, highlighting how proper understanding of the underlying mechanisms and interactions between solute and solvent help to choose proper systems for specific fractionation needs. Structural and chemical differences between the carbohydrate-based structural polymers and lignin require very different solvents capabilities in terms of causing and eventually stabilizing conformational changes and consequent activation of bonds to be cleaved by other active components in the. A consideration of potential depolymerization events during dissolution and energetic aspects of the dissolution process considering the contribution of polymer functionalities allow for a mapping of solvent suitability for biomass fractionation.


Asunto(s)
Carbohidratos , Lignina , Solventes/química , Biomasa , Lignina/química , Fraccionamiento Químico
14.
ChemSusChem ; 15(6): e202200301, 2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35244343

RESUMEN

Invited for this month's cover are Antonella Ilenia Alfano and Margherita Brindisi (University of Naples Federico II) and Heiko Lange (University of Milano Bicocca). The cover image highlights the impact of greener and more sustainable flow chemistry protocols applied to amide bond formation. The Review itself is available at 10.1002/cssc.202102708.


Asunto(s)
Amidas
15.
ChemSusChem ; 15(6): e202102708, 2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35015338

RESUMEN

Formation of amide bonds is of immanent importance in organic and synthetic medicinal chemistry. Its presence in "traditional" small-molecule active pharmaceutical ingredients, in linear or cyclic oligo- and polypeptidic actives, including pseudopeptides, has led to the development of dedicated synthetic approaches for the formation of amide bonds starting from, if necessary, suitably protected amino acids. While the use of solid supported reagents is common in traditional peptide synthesis, similar approaches targeting amide bond formation in continuous-flow mode took off more significantly, after a first publication in 2006, only a couple of years ago. Most efforts rely upon the transition of traditional approaches in flow mode, or the combination of solid-phase peptide synthesis principles with flow chemistry, and advantages are mainly seen in improving space-time yields. This Review summarizes and compares the various approaches in terms of basic amide formation, peptide synthesis, and pseudopeptide generation, describing the technological approaches and the advantages that were generated by the specific flow approaches. A final discussion highlights potential future needs and perspectives in terms of greener and more sustainable syntheses.


Asunto(s)
Amidas , Técnicas de Síntesis en Fase Sólida , Amidas/química , Aminoácidos/química , Técnicas de Química Sintética/métodos , Péptidos/química , Técnicas de Síntesis en Fase Sólida/métodos
16.
Front Microbiol ; 13: 987164, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36687646

RESUMEN

Background: Tannins have demonstrated antibacterial and antibiofilm activity, but there are still unknown aspects on how the chemical properties of tannins affect their biological properties. We are interested in understanding how to modulate the antibiofilm activity of tannins and in delineating the relationship between chemical determinants and antibiofilm activity. Materials and methods: The effect of five different naturally acquired tannins and their chemical derivatives on biofilm formation and planktonic growth of Salmonella Typhimurium, Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus was determined in the Calgary biofilm device. Results: Most of the unmodified tannins exhibited specific antibiofilm activity against the assayed bacteria. The chemical modifications were found to alter the antibiofilm activity level and spectrum of the tannins. A positive charge introduced by derivatization with higher amounts of ammonium groups shifted the anti-biofilm spectrum toward Gram-negative bacteria, and derivatization with lower amounts of ammonium groups and acidifying derivatization shifted the spectrum toward Gram-positive bacteria. Furthermore, the quantity of phenolic OH-groups per molecule was found to have a weak impact on the anti-biofilm activity of the tannins. Conclusion: We were able to modulate the antibiofilm activity of several tannins by specific chemical modifications, providing a first approach for fine tuning of their activity and antibacterial spectrum.

17.
J Hazard Mater ; 439: 129696, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36104917

RESUMEN

The aim of this study was to investigate the pyrolysis products of polyhydroxyalkanoates (PHAs), polyethylene terephthalate (PET), carbon fiber reinforced composite (CFRC), and block co-polymers (PS-b-P2VP and PS-b-P4VP). The studied PHA samples were produced at temperatures of 15 and 50 oC (PHA15 and PHA50), and commercially obtained from GlasPort Bio (PHAc). Initially, PHA samples were analyzed by nuclear magnetic resonance (NMR) spectroscopy and size exclusion chromatography (SEC) to determine the molecular weight, and structure of the polymers. Thermal techniques such as thermogravimetry (TG) and differential scanning calorimetry (DSC) analyses were performed for PHA, CFRC, and block co-polymers to investigate the degradation temperature range and thermal stability of samples. Fast pyrolysis (500 oC, ∼102 °C s-1) experiments were conducted for all samples in a wire mesh reactor to investigate tar products and char yields. The tar compositions were investigated by gas chromatography-mass spectrometry (GC-MS), and statistical modeling was performed. The char yields of block co-polymers and PHA samples (<2 wt. %) were unequivocally less than that of the PET sample (~10.7 wt. %). All PHA compounds contained a large fraction of ethyl cyclopropane carboxylate (~ 38-58 %), whereas PAH15 and PHA50 additionally showed a large quantity of 2-butenoic acid (~8-12 %). The PHAc sample indicated the presence of considerably high amount of methyl ester (~15 %), butyl citrate (~12.9 %), and tributyl ester (~17 %). The compositional analyses of the liquid fraction of the PET and block co-polymers have shown carcinogenic and toxic properties. Pyrolysis removed matrices in the CRFC composites which is an indication of potential recovery of the original fibers.


Asunto(s)
Plásticos , Pirólisis , Ésteres , Reciclaje , Breas
18.
Chemistry ; 17(12): 3398-405, 2011 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-21344524

RESUMEN

Diastereoselective chain-elongation reactions are important transformations for the assembly of complex molecular structures, such as those present in polyketide natural products. Here we report new methods for performing crotylation reactions and homopropargylation reactions by using newly developed low-temperature flow-chemistry technology. In-line purification protocols are described, as well as the application of the crotylation protocol in an automated multi-step sequence.

19.
Org Biomol Chem ; 9(6): 1938-47, 2011 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-21283874

RESUMEN

Having demonstrated in the preceding publication the flow synthesis of aryl azides, we describe here a general protocol for the in-line purification of these versatile intermediates. As part of this investigation, we evaluated the use of ReactIR 45m as a tool for real-time detection of hazardous azide contaminants. This azide synthesis and purification process was then incorporated into a multistep flow sequence to generate a small collection of 5-amino-4-cyano-1,2,3-triazoles directly from aniline starting materials in a fully automated fashion.

20.
Beilstein J Org Chem ; 7: 1648-55, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22238543

RESUMEN

Herein we describe the application of a monolithic triphenylphosphine reagent to the Appel reaction in flow-chemistry processing, to generate various brominated products with high purity and in excellent yields, and with no requirement for further off-line purification.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA