Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur J Nucl Med Mol Imaging ; 49(1): 234-245, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33978829

RESUMEN

PURPOSE: Calcineurin inhibitors (CNI) can cause long-term impairment of brain function. Possible pathomechanisms include alterations of the cerebral immune system. This study used positron emission tomography (PET) imaging with the translocator protein (TSPO) ligand 18F-GE-180 to evaluate microglial activation in liver-transplanted patients under different regimens of immunosuppression. METHODS: PET was performed in 22 liver-transplanted patients (3 CNI free, 9 with low-dose CNI, 10 with standard-dose CNI immunosuppression) and 9 healthy controls. The total distribution volume (VT) estimated in 12 volumes-of-interest was analyzed regarding TSPO genotype, CNI therapy, and cognitive performance. RESULTS: In controls, VT was about 80% higher in high affinity binders (n = 5) compared to mixed affinity binders (n = 3). Mean VT corrected for TSPO genotype was significantly lower in patients compared to controls, especially in patients in whom CNI dose had been reduced because of nephrotoxic side effect. CONCLUSION: Our results provide evidence of chronic suppression of microglial activity in liver-transplanted patients under CNI therapy especially in patients with high sensitivity to CNI toxicity.


Asunto(s)
Trasplante de Hígado , Microglía , Encéfalo/metabolismo , Humanos , Terapia de Inmunosupresión/efectos adversos , Microglía/metabolismo , Tomografía de Emisión de Positrones , Receptores de GABA/metabolismo
2.
J Nucl Cardiol ; 28(4): 1636-1645, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31659697

RESUMEN

BACKGROUND: Leukocyte subtypes bear distinct pro-inflammatory, reparative, and regulatory functions. Imaging inflammation provides information on disease prognosis and may guide therapy, but the cellular basis of the signal remains equivocal. We evaluated leukocyte subtype specificity of characterized clinically relevant inflammation-targeted radiotracers. METHODS AND RESULTS: Leukocyte populations were purified from blood- and THP-1-derived macrophages were polarized into M1-, reparative M2a-, or M2c-macrophages. In vitro uptake assays were conducted using tracers of enhanced glucose or amino acid metabolism and molecular markers of inflammatory cells. Both 18F-deoxyglucose (18F-FDG) and the labeled amino acid 11C-methionine (11C-MET) displayed higher uptake in neutrophils and monocytes compared to other leukocytes (P = 0.005), and markedly higher accumulation in pro-inflammatory M1-macrophages compared to reparative M2a-macrophages (P < 0.001). Molecular tracers 68Ga-DOTATATE targeting the somatostatin receptor type 2 and 68Ga-pentixafor targeting the chemokine receptor type 4 (CXCR4) exhibited broad uptake by leukocyte subpopulations and polarized macrophages with highest uptake in T-cells/natural killer cells and B-cells compared to neutrophils. Mitochondrial translocator protein (TSPO)-targeted 18F-flutriciclamide selectively accumulated in monocytes and pro-inflammatory M1 macrophages (P < 0.001). Uptake by myocytes and fibroblasts tended to be higher for metabolic radiotracers. CONCLUSIONS: The different in vitro cellular uptake profiles may allow isolation of distinct phases of the inflammatory pathway with specific inflammation-targeted radiotracers. The pathogenetic cell population in specific inflammatory diseases should be considered in the selection of an appropriate imaging agent.


Asunto(s)
Leucocitos/metabolismo , Macrófagos/metabolismo , Radiofármacos/farmacocinética , Animales , Técnicas de Cultivo de Célula , Complejos de Coordinación/farmacocinética , Fibroblastos/metabolismo , Radioisótopos de Flúor/farmacocinética , Fluorodesoxiglucosa F18/farmacocinética , Humanos , Indoles/farmacocinética , Miocitos Cardíacos/metabolismo , Octreótido/análogos & derivados , Octreótido/farmacocinética , Compuestos Organometálicos/farmacocinética , Péptidos Cíclicos/farmacocinética , Ratas
3.
Eur J Nucl Med Mol Imaging ; 47(12): 2887-2900, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32322915

RESUMEN

PURPOSE: Tracer kinetic modeling of tissue time activity curves and the individual input function based on arterial blood sampling and metabolite correction is the gold standard for quantitative characterization of microglia activation by PET with the translocator protein (TSPO) ligand 18F-GE-180. This study tested simplified methods for quantification of 18F-GE-180 PET. METHODS: Dynamic 18F-GE-180 PET with arterial blood sampling and metabolite correction was performed in five healthy volunteers and 20 liver-transplanted patients. Population-based input function templates were generated by averaging individual input functions normalized to the total area under the input function using a leave-one-out approach. Individual population-based input functions were obtained by scaling the input function template with the individual parent activity concentration of 18F-GE-180 in arterial plasma in a blood sample drawn at 27.5 min or by the individual administered tracer activity, respectively. The total 18F-GE-180 distribution volume (VT) was estimated in 12 regions-of-interest (ROIs) by the invasive Logan plot using the measured or the population-based input functions. Late ROI-to-whole-blood and ROI-to-cerebellum ratio were also computed. RESULTS: Correlation with the reference VT (with individually measured input function) was very high for VT with the population-based input function scaled with the blood sample and for the ROI-to-whole-blood ratio (Pearson correlation coefficient = 0.989 ± 0.006 and 0.970 ± 0.005). The correlation was only moderate for VT with the population-based input function scaled with tracer activity dose and for the ROI-to-cerebellum ratio (0.653 ± 0.074 and 0.384 ± 0.177). Reference VT, population-based VT with scaling by the blood sample, and ROI-to-whole-blood ratio were sensitive to the TSPO gene polymorphism. Population-based VT with scaling to the administered tracer activity and the ROI-to-cerebellum ratio failed to detect a polymorphism effect. CONCLUSION: These results support the use of a population-based input function scaled with a single blood sample or the ROI-to-whole-blood ratio at a late time point for simplified quantitative analysis of 18F-GE-180 PET.


Asunto(s)
Encéfalo , Tomografía de Emisión de Positrones , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Carbazoles , Humanos , Receptores de GABA/metabolismo , Reproducibilidad de los Resultados
4.
Theranostics ; 11(16): 7755-7766, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335962

RESUMEN

Background: Myocardial infarction (MI) evokes an organized remodeling process characterized by the activation and transdifferentiation of quiescent cardiac fibroblasts to generate a stable collagen rich scar. Early fibroblast activation may be amenable to targeted therapy, but is challenging to identify in vivo. We aimed to non-invasively image active fibrosis by targeting the fibroblast activation protein (FAP) expressed by activated (myo)fibroblasts, using a novel positron emission tomography (PET) radioligand [68Ga]MHLL1 after acute MI. Methods: One-step chemical synthesis and manual as well as module-based radiolabeling yielded [68Ga]MHLL1. Binding characteristics were evaluated in murine and human FAP-transfected cells, and stability tested in human serum. Biodistribution in healthy animals was interrogated by dynamic PET imaging, and metabolites were measured in blood and urine. The temporal pattern of FAP expression was determined by serial PET imaging at 7 d and 21 d after coronary artery ligation in mice as percent injected dose per gram (%ID/g). PET measurements were validated by ex vivo autoradiography and immunostaining for FAP and inflammatory macrophages. Results: [68Ga]MHLL1 displayed specific uptake in murine and human FAP-positive cells (p = 0.0208). In healthy mice the tracer exhibited favorable imaging characteristics, with low blood pool retention and dominantly renal clearance. At 7 d after coronary artery ligation, [68Ga]MHLL1 uptake was elevated in the infarct relative to the non-infarcted remote myocardium (1.3 ± 0.3 vs. 1.0 ± 0.2 %ID/g, p < 0.001) which persisted to 21 d after MI (1.3 ± 0.4 vs. 1.1 ± 0.4 %ID/g, p = 0.013). Excess unlabeled compound blocked tracer accumulation in both infarct and non-infarct remote myocardium regions (p < 0.001). Autoradiography and histology confirmed the regional uptake of [68Ga]MHLL1 in the infarct and especially border zone regions, as identified by Masson trichrome collagen staining. Immunostaining further delineated persistent FAP expression at 7 d and 21 d post-MI in the border zone, consistent with tracer distribution in vivo. Conclusion: The simplified synthesis of [68Ga]MHLL1 bears promise for non-invasive characterization of fibroblast activation protein early in remodeling after MI.


Asunto(s)
Endopeptidasas/metabolismo , Radioisótopos de Galio/farmacología , Proteínas de la Membrana/metabolismo , Tomografía de Emisión de Positrones/métodos , Animales , Autorradiografía/métodos , Línea Celular Tumoral , Endopeptidasas/fisiología , Fibroblastos/metabolismo , Fibrosis/diagnóstico por imagen , Radioisótopos de Galio/metabolismo , Humanos , Masculino , Proteínas de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Imagen Molecular/métodos , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Miocardio/patología , Distribución Tisular/fisiología , Tomografía Computarizada por Rayos X/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA