Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nature ; 609(7926): 313-319, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36045297

RESUMEN

The vertebrate lineages that would shape Mesozoic and Cenozoic terrestrial ecosystems originated across Triassic Pangaea1-11. By the Late Triassic (Carnian stage, ~235 million years ago), cosmopolitan 'disaster faunas' (refs. 12-14) had given way to highly endemic assemblages12,13 on the supercontinent. Testing the tempo and mode of the establishment of this endemism is challenging-there were few geographic barriers to dispersal across Pangaea during the Late Triassic. Instead, palaeolatitudinal climate belts, and not continental boundaries, are proposed to have controlled distribution15-18. During this time of high endemism, dinosaurs began to disperse and thus offer an opportunity to test the timing and drivers of this biogeographic pattern. Increased sampling can test this prediction: if dinosaurs initially dispersed under palaeolatitudinal-driven endemism, then an assemblage similar to those of South America4,19-21 and India19,22-including the earliest dinosaurs-should be present in Carnian deposits in south-central Africa. Here we report a new Carnian assemblage from Zimbabwe that includes Africa's oldest definitive dinosaurs, including a nearly complete skeleton of the sauropodomorph Mbiresaurus raathi gen. et sp. nov. This assemblage resembles other dinosaur-bearing Carnian assemblages, suggesting that a similar vertebrate fauna ranged high-latitude austral Pangaea. The distribution of the first dinosaurs is correlated with palaeolatitude-linked climatic barriers, and dinosaurian dispersal to the rest of the supercontinent was delayed until these barriers relaxed, suggesting that climatic controls influenced the initial composition of the terrestrial faunas that persist to this day.


Asunto(s)
Dinosaurios , Ecosistema , Animales , Clima , Fósiles , Historia Antigua , Filogenia , Filogeografía , Densidad de Población , Dinámica Poblacional , Esqueleto , Zimbabwe
2.
Nature ; 588(7838): 445-449, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33299179

RESUMEN

Pterosaurs were the first vertebrates to evolve powered flight1 and comprised one of the main evolutionary radiations in terrestrial ecosystems of the Mesozoic era (approximately 252-66 million years ago), but their origin has remained an unresolved enigma in palaeontology since the nineteenth century2-4. These flying reptiles have been hypothesized to be the close relatives of a wide variety of reptilian clades, including dinosaur relatives2-8, and there is still a major morphological gap between those forms and the oldest, unambiguous pterosaurs from the Upper Triassic series. Here, using recent discoveries of well-preserved cranial remains, microcomputed tomography scans of fragile skull bones (jaws, skull roofs and braincases) and reliably associated postcrania, we demonstrate that lagerpetids-a group of cursorial, non-volant dinosaur precursors-are the sister group of pterosaurs, sharing numerous synapomorphies across the entire skeleton. This finding substantially shortens the temporal and morphological gap between the oldest pterosaurs and their closest relatives and simultaneously strengthens the evidence that pterosaurs belong to the avian line of archosaurs. Neuroanatomical features related to the enhanced sensory abilities of pterosaurs9 are already present in lagerpetids, which indicates that these features evolved before flight. Our evidence illuminates the first steps of the assembly of the pterosaur body plan, whose conquest of aerial space represents a remarkable morphofunctional innovation in vertebrate evolution.


Asunto(s)
Huesos/anatomía & histología , Dinosaurios/anatomía & histología , Dinosaurios/clasificación , Fósiles , Filogenia , Animales , Calibración , Cráneo/anatomía & histología , Factores de Tiempo , Alas de Animales/anatomía & histología , Microtomografía por Rayos X
3.
J Anat ; 239(3): 622-662, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33870512

RESUMEN

Baurusuchidae is one of the most diverse groups of South American notosuchians, unambiguously recorded in Late Cretaceous deposits of Brazil and Argentina. The group is characterized by a reduced tooth formula, a lateromedially compressed rostrum, and a verticalized quadrate, representing one of the top predators of their faunas. Historically, skull morphology is the most employed tool to investigate the relationships of baurusuchids, as most of the species have been primarily based on cranial remains. The present study describes a new baurusuchid species from the Bauru Basin of Brazil, based on the first tridimensional digital reconstruction of individualized skull bones for Notosuchia, and discusses its phylogenetic position within the group. The new species differs from all the other known baurusuchids by a depression on the posterior portion of the nasal bearing a crest, an infraorbital crest of the jugal that extends until the anterior margin of the lacrimal, the dorsal surface of the frontal lacking a longitudinal crest or depression, and the lateral convexity of the squamosal prongs participating in the occipital wall. The new taxon is consistently positioned as sister to the remaining baurusuchines, with Aplestosuchus sordidus and Stratiotosuchus maxhechti, as successive sister-taxa to a monophyletic Baurusuchus (Ba. albertoi, Ba. Salgadoensis, and Ba. pachecoi). Our updated phylogenetic analysis helps to differentiate the two major Baurusuchidae lineages, Baurusuchinae and Pissarrachampsinae. Yet, the new species shares morphological features with both groups, suggesting the occurrence of "Zones of Variability" in the radiation of Baurusuchidae.


Asunto(s)
Caimanes y Cocodrilos/anatomía & histología , Evolución Biológica , Fósiles , Modelos Anatómicos , Cráneo/anatomía & histología , Animales , Brasil , Filogenia , Cráneo/diagnóstico por imagen , Tomografía Computarizada por Rayos X
5.
Naturwissenschaften ; 103(3-4): 28, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26940060

RESUMEN

The matamata (Chelus fimbriatus) is a highly aquatic chelid turtle known exclusively from northern South America. Due to its extremely modified morphology, it is well circumscribed among living taxa, but that is not the case of the two extinct species ascribed to the taxon, Chelus colombianus and Chelus lewisi. These were originally described for the Miocene of Colombia and Venezuela, respectively, and are known mostly from post-cranial material. Few traits have been considered diagnostic for these fossil taxa, and their shared geographic and temporal distributions raise doubts about their distinctiveness. Here, we describe new turtle remains from the early Miocene Castillo Formation, at Cerro la Cruz, northwestern Venezuela, assigning them to C. colombianus. We also review the taxonomy and diagnostic features of the fossil species of Chelus, comparing them with the variation recognized within C. fimbriatus. All alleged differences between the fossil Chelus species were found in our sample of the extant species, and may represent intraspecific variation of a single fossil species. Further, we reviewed the fossil record of Chelus spp. and proposed a paleobiogeographic hypothesis to explain its present geographic range.


Asunto(s)
Fósiles , Tortugas/anatomía & histología , Tortugas/clasificación , Distribución Animal , Animales , Filogenia , Especificidad de la Especie , Venezuela
6.
Anat Rec (Hoboken) ; 307(4): 1147-1174, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37794742

RESUMEN

The anatomy of the braincase and associated soft tissues of the lagerpetid Dromomeron gregorii (Archosauria: Avemetatarsalia) from the Late Triassic of the United States is here described. This corresponds to the first detailed description of cranial materials of Lagerpetidae, an enigmatic group of Late Triassic (c. 236-200 Million years ago) animals that are the closest known relatives of pterosaurs, the flying reptiles. The braincase of D. gregorii is characterized by the presence of an anteriorly elongated laterosphenoid and a postparietal, features observed in stem-archosaurs but that were still unknown in early members of the avian lineage of archosaurs. Using micro-computed tomography (CT-scan data), we present digital reconstructions of the brain and endosseous labyrinth of D. gregorii. The brain of D. gregorii exhibits a floccular lobe of the cerebellum that projects within the space of the semicircular canals. The semicircular canals are relatively large when compared to other archosauromorphs, with the anterior canal exhibiting a circular shape. These features of the sensory structures of D. gregorii are more similar to those of pterosaurs than to those of other early avemetatarsalians. In sum, the braincase anatomy of D. gregorii shows a combination of plesiomorphic and apomorphic features in the phylogenetic context of Archosauria and suggests that the still poorly understood early evolution of the braincase in avemetatarsalians is complex, with a scenario of independent acquisitions and losses of character states.


Asunto(s)
Dinosaurios , Fósiles , Animales , Filogenia , Neuroanatomía , Microtomografía por Rayos X , Cráneo/anatomía & histología , Canales Semicirculares , Evolución Biológica , Dinosaurios/anatomía & histología
7.
Naturwissenschaften ; 100(9): 835-41, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23893176

RESUMEN

Phylogenetic relationships near the origin of extant crocodylians are weakly supported, and this lack of resolution makes for poor estimates of taxonomic and morphological diversity. Previously known taxa are found throughout the Cretaceous in Laurasia and at a few sites from Brazil, Australia, and northern Africa. Here, we report Batrachomimus pastosbonensis gen. et sp. nov. from the Late Jurassic of northeastern Brazil, which is deeply nested within Neosuchia and associated to the Cretaceous Asian paralligatorids. The new taxon predates all other members of Paralligatoridae and its immediate sister group (including Eusuchia) by 30 million years. A nearly complete skull, osteoderms, and limb bones were recovered, and autapomorphies of B. pastosbonensis include a scalloped lateral margin of the rostrum in dorsal view, unsculpted alveolar margin at the caudalmost portion of the maxilla, blunt lateral prongs on the jugal at the base of the postorbital bar, hourglass shaped choanae, and pterygoid choanal septum extended between the palatal shelves of the palatines. The crocodyloid-like skull proportions and the slender, conical teeth suggest an amphibious and piscivorous life history to this 1 m long animal.


Asunto(s)
Caimanes y Cocodrilos/anatomía & histología , Caimanes y Cocodrilos/clasificación , Fósiles , Filogenia , Animales , Asia , Brasil , Cráneo/anatomía & histología , Especificidad de la Especie
8.
Ecol Evol ; 13(6): e10201, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37384241

RESUMEN

Organisms display a considerable variety of body sizes and shapes, and macroevolutionary investigations help to understand the evolutionary dynamics behind such variations. Turtles (Testudinata) show great body size disparity, especially when their rich fossil record is accounted for. We explored body size evolution in turtles, testing which factors might influence the observed patterns and evaluating the existence of long-term directional trends. We constructed the most comprehensive body size dataset for the group to date, tested for correlation with paleotemperature, estimated ancestral body sizes, and performed macroevolutionary model-fitting analyses. We found no evidence for directional body size evolution, even when using very flexible models, thereby rejecting the occurrence of Cope's rule. We also found no significant effect of paleotemperature on overall through-time body size patterns. In contrast, we found a significant influence of habitat preference on turtle body size. Freshwater turtles display a rather homogeneous body size distribution through time. In contrast, terrestrial and marine turtles show more pronounced variation, with terrestrial forms being restricted to larger body sizes, up to the origin of testudinids in the Cenozoic, and marine turtles undergoing a reduction in body size disparity after the extinctions of many groups in the mid-Cenozoic. Our results, therefore, suggest that long-term, generalized patterns are probably explained by factors specific to certain groups and related at least partly to habitat use.

9.
Anat Rec (Hoboken) ; 305(5): 1119-1146, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34358415

RESUMEN

Lewisuchus admixtus is an early dinosauriform described by Alfred Romer in 1972 on the basis of a single, incomplete skeleton, collected in lower Upper Triassic rocks of the renowned Chañares Formation, at the Los Chañares type-locality, La Rioja Province, north-western Argentina. Recent field explorations to the type-locality resulted in the discovery of two partial articulated skeletons, which provide significant novel information. The cranial bones, presacral series, femur, tibia, and proximal tarsals of the new specimens match the preserved overlapping anatomy of the holotype and previously referred specimens of L. admixtus, including the presence of unique combination of character states among dinosauriforms (anterior presacral column with additional ossification on the top of neural spines, dorsal neural spines fan-shaped, anterior surface of the astragalus with a dorsally curved groove, and an inflated area on the anterior portion of the medial surface of this bone). This new information improves our understanding of the anatomy and taxonomy of early dinosauriforms and reinforces the role of Argentinean beds on the study of the origin of dinosaurs.


Asunto(s)
Dinosaurios , Fósiles , Animales , Argentina , Evolución Biológica , Dinosaurios/anatomía & histología , Filogenia , Cráneo/anatomía & histología
10.
PeerJ ; 10: e14333, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36405026

RESUMEN

The description of new titanosaur specimens unearthed from deposits of the Serra da Galga Formation (Bauru Group, Late Cretaceous) at the BR-262 site, near Peirópolis (Uberaba, Minas Gerais State, Brazil), sheds light on the taxonomy of two taxa previously known from the same area and geological unit: Baurutitan britoi and Trigonosaurus pricei. A comparative revision indicates that T. pricei represents a junior synonym of Ba. britoi, and that the BR-262 specimens belong to that latter species. The information provided by the new specimens also revealed that the paratype of T. pricei (MCT 1719-R), a caudal vertebral series, actually represents a new taxon, named here as Caieiria allocaudata gen. et sp. nov.


Asunto(s)
Dinosaurios , Animales , Brasil , Filogenia , Columna Vertebral , Geología
11.
Evolution ; 76(11): 2566-2586, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36117268

RESUMEN

Turtles have a highly modified body plan, including a rigid shell that constrains postcranial anatomy. Skull morphology and neck mobility may therefore be key to ecological specialization in turtles. However, the ecological signal of turtle skull morphologies has not been rigorously evaluated, leaving uncertainties about the roles of ecological adaptation and convergence. We evaluate turtle cranial ecomorphology using three-dimensional geometric morphometrics and phylogenetic comparative methods. Skull shape correlates with allometry, neck retraction capability, and different aquatic feeding ecologies. We find that ecological variables influence skull shape only, whereas a key functional variable (the capacity for neck retraction) influences both shape and size. Ecology and functional predictions from three-dimensional shape are validated by high success rates for extant species, outperforming previous two-dimensional approaches. We use this to infer ecological and functional traits of extinct species. Neck retraction evolved among crownward stem-turtles by the Late Jurassic, signaling functional decoupling of the skull and neck from the shell, possibly linked to a major episode of ecomorphological diversification. We also find strong evidence for convergent ecological adaptations among marine groups. This includes parallel loss of neck retraction, evidence for active hunting, possible grazing, and suction feeding in extinct marine groups. Our large-scale assessment of dietary and functional adaptation throughout turtle evolution reveals the timing and origin of their distinct ecomorphologies, and highlights the potential for ecology and function to have distinct effects on skull form.


Tartarugas tem um plano corpóreo bastante modificado, que inclui um casco rígido que restringe sua anatomia pós-craniana. Portanto, a morfologia craniana e a mobilidade do pescoço devem ser centrais nas especializações ecológicas de tartarugas. No entanto, o sinal ecológico das diferentes morfologias de crânio de tartarugas não foi ainda rigorosamente avaliado, deixando incertezas sobre os papéis de adaptações ecológicas e convergência. Avaliamos a ecomorfologia craniana de tartarugas utilizando morfometria geométrica tridimensional e métodos filogenéticos comparativos. A forma craniana correlaciona com alometria, capacidade de retração do pescoço e diferentes ecologias alimentares aquáticas. Encontramos que variáveis ecológicas influenciam apenas a forma do crânio, enquanto uma importante variável funcional (a capacidade de retração do pescoço) influencia tanto a forma como o tamanho do crânio. Predições ecológicas e funcionais para espécies viventes a partir de formas tridimensionais são validadas com altas taxas de sucesso, superando abordagens bidimensionais. Utilizamos isso para inferir traços ecológicos e funcionais de espécies extintas. A retração do pescoço evoluiu em linhagens extintas mais próximas à origem do grupo-coronal durante o Jurássico Final, indicando uma dissociação funcional entre crânio e pescoço do casco, algo possivelmente ligado a um importante episódio de diversificação ecomorfológica. Também encontramos forte evidência para adaptações ecológicas convergentes em grupos marinhos. Isso inclui a perda paralela da retração do pescoço, evidência de caça ativa, alimentação por sucção, além de possível preferência por plantas aquáticas em grupos marinhos extintos. Nosso estudo de larga-escala sobre adaptações funcionais e relacionadas à dieta ao longo da evolução de tartarugas revela o tempo e origem de suas distintas ecomorfologias, e destaca ainda o potencial de ecologia e função terem efeitos distintos sobre a forma craniana.


Asunto(s)
Tortugas , Animales , Tortugas/anatomía & histología , Filogenia , Cráneo/anatomía & histología , Cuello/anatomía & histología , Cabeza , Evolución Biológica
12.
Naturwissenschaften ; 98(5): 389-95, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21445632

RESUMEN

For more than 30 million years, in early Mesozoic Pangea, "rauisuchian" archosaurs were the apex predators in most terrestrial ecosystems, but their biology and evolutionary history remain poorly understood. We describe a new "rauisuchian" based on ten individuals found in a single locality from the Middle Triassic (Ladinian) Santa Maria Formation of southern Brazil. Nine articulated and associated skeletons were discovered, three of which have nearly complete skulls. Along with sedimentological and taphonomic data, this suggests that those highly successful predators exhibited some kind of intraspecific interaction. Other monotaxic assemblages of Triassic archosaurs are Late Triassic (Norian-Rhaetian) in age, approximately 10 million years younger than the material described here. Indeed, the studied assemblage may represent the earliest evidence of gregariousness among archosaurs, adding to our knowledge on the origin of a behavior pattern typical of extant taxa.


Asunto(s)
Huesos/anatomía & histología , Fósiles , Reptiles/anatomía & histología , Reptiles/clasificación , Animales , Brasil , Paleontología , Especificidad de la Especie
13.
Naturwissenschaften ; 98(12): 1035-40, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22083251

RESUMEN

Post-Triassic theropod, sauropodomorph, and ornithischian dinosaurs are readily recognized based on the set of traits that typically characterize each of these groups. On the contrary, most of the early members of those lineages lack such specializations, but share a range of generalized traits also seen in more basal dinosauromorphs. Here, we report on a new Late Triassic dinosaur from the Santa Maria Formation of Rio Grande do Sul, southern Brazil. The specimen comprises the disarticulated partial skeleton of a single individual, including most of the skull bones. Based on four phylogenetic analyses, the new dinosaur fits consistently on the sauropodomorph stem, but lacks several typical features of sauropodomorphs, showing dinosaur plesiomorphies together with some neotheropod traits. This is not an exception among basal dinosaurs, the early radiation of which is characterized by a mosaic pattern of character acquisition, resulting in the uncertain phylogenetic placement of various early members of the group.


Asunto(s)
Dinosaurios/anatomía & histología , Dinosaurios/clasificación , Fósiles , Animales , Brasil , Filogenia , Cráneo/anatomía & histología
14.
An Acad Bras Cienc ; 83(1): 23-60, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21437375

RESUMEN

The record of dinosaur body-fossils in the Brazilian Mesozoic is restricted to the Triassic of Rio Grande do Sul and Cretaceous of various parts of the country. This includes 21 named species, two of which were regarded as nomina dubia, and 19 consensually assigned to Dinosauria. Additional eight supraspecific taxa have been identified based on fragmentary specimens and numerous dinosaur footprints known in Brazil. In fact, most Brazilian specimens related to dinosaurs are composed of isolated teeth and vertebrae. Despite the increase of fieldwork during the last decade, there are still no dinosaur body-fossils of Jurassic age and the evidence of ornithischians in Brazil is very limited. Dinosaur faunas from this country are generally correlated with those from other parts of Gondwana throughout the Mesozoic. During the Late Triassic, there is a close correspondence to Argentina and other south-Pangaea areas. Mid-Cretaceous faunas of northeastern Brazil resemble those of coeval deposits of North Africa and Argentina. Southern hemisphere spinosaurids are restricted to Africa and Brazil, whereas abelisaurids are still unknown in the Early Cretaceous of the latter. Late Cretaceous dinosaur assemblages of south-central Brazil are endemic only to genus or, more conspicuously, to species level, sharing closely related taxa with Argentina, Madagascar, Indo-Pakistan and, to a lesser degree, continental Africa.


Asunto(s)
Dinosaurios/clasificación , Paleontología , Filogeografía , Animales , Brasil , Fósiles
15.
Curr Biol ; 31(12): 2520-2529.e6, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-33930303

RESUMEN

Living archosaurs (birds and crocodylians) have disparate locomotor strategies that evolved since their divergence ∼250 mya. Little is known about the early evolution of the sensory structures that are coupled with these changes, mostly due to limited sampling of early fossils on key stem lineages. In particular, the morphology of the semicircular canals (SCCs) of the endosseous labyrinth has a long-hypothesized relationship with locomotion. Here, we analyze SCC shapes and sizes of living and extinct archosaurs encompassing diverse locomotor habits, including bipedal, semi-aquatic, and flying taxa. We test form-function hypotheses of the SCCs and chronicle their evolution during deep archosaurian divergences. We find that SCC shape is statistically associated with both flight and bipedalism. However, this shape variation is small and is more likely explained by changes in braincase geometry than by locomotor changes. We demonstrate high disparity of both shape and size among stem-archosaurs and a deep divergence of SCC morphologies at the bird-crocodylian split. Stem-crocodylians exhibit diverse morphologies, including aspects also present in birds and distinct from other reptiles. Therefore, extant crocodylian SCC morphologies do not reflect retention of a "primitive" reptilian condition. Key aspects of bird SCC morphology that hitherto were interpreted as flight related, including large SCC size and enhanced sensitivity, appeared early on the bird stem-lineage in non-flying dinosaur precursors. Taken together, our results indicate a deep divergence of SCC traits at the bird-crocodylian split and that living archosaurs evolved from an early radiation with high sensory diversity. VIDEO ABSTRACT.


Asunto(s)
Evolución Biológica , Aves/anatomía & histología , Dinosaurios/anatomía & histología , Extinción Biológica , Canales Semicirculares/anatomía & histología , Animales , Fósiles , Filogenia , Reptiles/anatomía & histología
16.
Anat Rec (Hoboken) ; 303(4): 813-873, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31797580

RESUMEN

The diagnosis of Dinosauria and interrelationships of the earliest dinosaurs relies on careful documentation of the anatomy of their closest relatives. These close relatives, or dinosaur "precursors," are typically only documented by a handful of fossils from across Pangea and nearly all specimens are typically missing important regions (e.g., forelimbs, pelves, skulls) that appear to be important to help resolving the relationships of dinosaurs. Here, we fully describe the known skeletal elements of Asilisaurus kongwe, a dinosauriform from the Middle Triassic Manda Beds of the Ruhuhu Basin of Tanzania. The taxon is known from many disarticulated and partially articulated remains and, most importantly, from a spectacularly preserved associated skeleton of an individual containing much of the skull, pectoral and pelvic girdles, forelimb and hindlimb, and parts of the vertebral column including much of the tail. The unprecedented detail of the anatomy indicates that Asilisaurus kongwe had a unique skull that was short and had both a premaxillary and dentary edentulous margin, but retained a number of character states plesiomorphic for Archosauria, including a crocodylian-like ankle configuration and a rather short foot with well-developed metatarsals I and V. Additionally, character states present across the skeleton of Asilisaurus kongwe suggest it is more closely related to Silesaurus opolensis than to dinosaurs; thus suggesting high homoplasy and parallel trends within Silesauridae and within lineages of early dinosaurs. The anatomy of Asilisaurus kongwe and detailed description of early members of clades found outside Dinosauria are clearly needed to untangle the seemingly complex character evolution of the skeleton within avemetatarsalians. Anat Rec, 303:813-873, 2020. © 2019 American Association for Anatomy.


Asunto(s)
Dinosaurios/anatomía & histología , Miembro Anterior/anatomía & histología , Fósiles , Miembro Posterior/anatomía & histología , Cráneo/anatomía & histología , Columna Vertebral/anatomía & histología , Animales , Evolución Biológica , Filogenia , Tanzanía
17.
Sci Rep ; 10(1): 12782, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32728077

RESUMEN

Present knowledge of Late Triassic tetrapod evolution, including the rise of dinosaurs, relies heavily on the fossil-rich continental deposits of South America, their precise depositional histories and correlations. We report on an extended succession of the Ischigualasto Formation exposed in the Hoyada del Cerro Las Lajas (La Rioja, Argentina), where more than 100 tetrapod fossils were newly collected, augmented by historical finds such as the ornithosuchid Venaticosuchus rusconii and the putative ornithischian Pisanosaurus mertii. Detailed lithostratigraphy combined with high-precision U-Pb geochronology from three intercalated tuffs are used to construct a robust Bayesian age model for the formation, constraining its deposition between 230.2 ± 1.9 Ma and 221.4 ± 1.2 Ma, and its fossil-bearing interval to 229.20 + 0.11/- 0.15-226.85 + 1.45/- 2.01 Ma. The latter is divided into a lower Hyperodapedon and an upper Teyumbaita biozones, based on the ranges of the eponymous rhynchosaurs, allowing biostratigraphic correlations to elsewhere in the Ischigualasto-Villa Unión Basin, as well as to the Paraná Basin in Brazil. The temporally calibrated Ischigualasto biostratigraphy suggests the persistence of rhynchosaur-dominated faunas into the earliest Norian. Our ca. 229 Ma age assignment to Pi. mertii partially fills the ghost lineage between younger ornithischian records and the oldest known saurischians at ca. 233 Ma.

18.
PLoS One ; 14(9): e0221387, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31490962

RESUMEN

Saturnalia tupiniquim is a sauropodomorph dinosaur from the Late Triassic (Carnian-c. 233 Ma) Santa Maria Formation of Brazil. Due to its phylogenetic position and age, it is important for studies focusing on the early evolution of both dinosaurs and sauropodomorphs. The osteology of Saturnalia has been described in a series of papers, but its cranial anatomy remains mostly unknown. Here, we describe the skull bones of one of its paratypes (only in the type-series to possess such remains) based on CT Scan data. The newly described elements allowed estimating the cranial length of Saturnalia and provide additional support for the presence of a reduced skull (i.e. two thirds of the femoral length) in this taxon, as typical of later sauropodomorphs. Skull reduction in Saturnalia could be related to an increased efficiency for predatory feeding behaviour, allowing fast movements of the head in order to secure small and elusive prey, a hypothesis also supported by data from its tooth and brain morphology. A principal co-ordinates analysis of the sauropodomorph jaw feeding apparatus shows marked shifts in morphospace occupation in different stages of the first 30 million years of their evolutionary history. One of these shifts is observed between non-plateosaurian and plateosaurian sauropodomorphs, suggesting that, despite also having an omnivorous diet, the feeding behaviour of some early Carnian sauropodomorphs, such as Saturnalia, was markedly different from that of later Triassic taxa. A second shift, between Late Triassic and Early Jurassic taxa, is congruent with a floral turnover hypothesis across the Triassic-Jurassic boundary.


Asunto(s)
Evolución Biológica , Dinosaurios/anatomía & histología , Dinosaurios/fisiología , Conducta Alimentaria , Cráneo/anatomía & histología , Animales , Arqueología , Brasil
19.
Zootaxa ; 4577(3): zootaxa.4577.3.1, 2019 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-31715707

RESUMEN

Uberabatitan ribeiroi is a Late Cretaceous titanosaur (Dinosauria, Sauropoda) from southeastern Brazil. Here we provide a detailed revision of all its available specimens, including new elements from the type-locality. One new autopomorphy is added to diagnosis of the taxon: astragalus with a well-developed anteroposterior crest that mediodistally delimits the tibial articulation. Linear regressions were conducted in an attempt to circumscribe specimens within the type-series, revealing that it is composed of several individuals, with inferred total body lengths varying from 7 to 26 meters. Phylogenetic analyses including U. ribeiroi show that the Brazilian taxon corresponds to a non-saltasaurid lithostrotian titanosaur.


Asunto(s)
Dinosaurios , Osteología , Animales , Brasil , Fósiles , Filogenia
20.
R Soc Open Sci ; 5(3): 171773, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29657780

RESUMEN

Pleurodires or side-necked turtles are today restricted to freshwater environments of South America, Africa-Madagascar and Australia, but in the past they were distributed much more broadly, being found also on Eurasia, India and North America, and marine environments. Two hypotheses were proposed to explain this distribution; in the first, vicariance would have shaped the current geographical distribution and, in the second, extinctions constrained a previously widespread distribution. Here, we aim to reconstruct pleurodiran biogeographic history and diversification patterns based on a new phylogenetic hypothesis recovered from the analysis of the largest morphological dataset yet compiled for the lineage, testing which biogeographical process prevailed during its evolutionary history. The resulting topology generally agrees with previous hypotheses of the group and shows that most diversification shifts were related to the exploration of new niches, e.g. littoral or marine radiations. In addition, as other turtles, pleurodires do not seem to have been much affected by either the Cretaceous-Palaeogene or the Eocene-Oligocene mass extinctions. The biogeographic analyses highlight the predominance of both anagenetic and cladogenetic dispersal events and support the importance of transoceanic dispersals as a more common driver of area changes than previously thought, agreeing with previous studies with other non-turtle lineages.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA