Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 44(11)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38316559

RESUMEN

Transcranial focused ultrasound stimulation (tFUS) is a noninvasive neuromodulation technique, which can penetrate deeper and modulate neural activity with a greater spatial resolution (on the order of millimeters) than currently available noninvasive brain stimulation methods, such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). While there are several studies demonstrating the ability of tFUS to modulate neuronal activity, it is unclear whether it can be used for producing long-term plasticity as needed to modify circuit function, especially in adult brain circuits with limited plasticity such as the thalamocortical synapses. Here we demonstrate that transcranial low-intensity focused ultrasound (LIFU) stimulation of the visual thalamus (dorsal lateral geniculate nucleus, dLGN), a deep brain structure, leads to NMDA receptor (NMDAR)-dependent long-term depression of its synaptic transmission onto layer 4 neurons in the primary visual cortex (V1) of adult mice of both sexes. This change is not accompanied by large increases in neuronal activity, as visualized using the cFos Targeted Recombination in Active Populations (cFosTRAP2) mouse line, or activation of microglia, which was assessed with IBA-1 staining. Using a model (SONIC) based on the neuronal intramembrane cavitation excitation (NICE) theory of ultrasound neuromodulation, we find that the predicted activity pattern of dLGN neurons upon sonication is state-dependent with a range of activity that falls within the parameter space conducive for inducing long-term synaptic depression. Our results suggest that noninvasive transcranial LIFU stimulation has a potential for recovering long-term plasticity of thalamocortical synapses in the postcritical period adult brain.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Corteza Visual , Masculino , Femenino , Ratones , Animales , Tálamo/fisiología , Plasticidad Neuronal/fisiología , Corteza Visual/fisiología , Sinapsis
2.
J Acoust Soc Am ; 133(2): EL108-13, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23363189

RESUMEN

Ambient noise was recorded on two vertical line arrays (VLAs) separated by 450 m and deployed in shallow water (depth ~150 m) off San Diego, CA continuously for 6 days. Recordings were dominated by non-stationary and non-uniform broadband shipping noise (250 Hz to 1.5 kHz). Stable coherent noise wavefronts were extracted from ambient noise correlations between the VLAs during all 6 days by mitigating the effect of discrete shipping events and using array beamforming with data-derived steering vectors. This procedure allows the tracking of arrival-time variations of these coherent wavefronts during 6 days and may help in developing future passive acoustic tomography systems.


Asunto(s)
Monitoreo del Ambiente/métodos , Modelos Teóricos , Ruido del Transporte , Navíos , Procesamiento de Señales Asistido por Computador , Sonido , Acústica/instrumentación , Análisis de Fourier , Movimiento (Física) , Océanos y Mares , Espectrografía del Sonido , Factores de Tiempo
3.
Curr Opin Neurobiol ; 50: 222-231, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29674264

RESUMEN

Ultrasound (US) is recognized for its use in medical imaging as a diagnostic tool. As an acoustic energy source, US has become increasingly appreciated over the past decade for its ability to non-invasively modulate cellular activity including neuronal activity. Data obtained from a host of experimental models has shown that low-intensity US can reversibly modulate the physiological activity of neurons in peripheral nerves, spinal cord, and intact brain circuits. Experimental evidence indicates that acoustic pressures exerted by US act, in part, on mechanosensitive ion channels to modulate activity. While the precise mechanisms of action enabling US to both stimulate and suppress neuronal activity remain to be clarified, there are several advantages conferred by the physics of US that make it an appealing option for neuromodulation. For example, it can be focused with millimeter spatial resolutions through skull bone to deep-brain regions. By increasing our engineering capability to leverage such physical advantages while growing our understanding of how US affects neuronal function, the development of a new generation of non-invasive neurotechnology can be developed using ultrasonic methods.


Asunto(s)
Mapeo Encefálico , Encéfalo/citología , Encéfalo/diagnóstico por imagen , Vías Nerviosas/diagnóstico por imagen , Neuronas/fisiología , Ultrasonido , Animales , Humanos
4.
Appl Phys Lett ; 104(5): 051914, 2014 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-24753623

RESUMEN

Capacitive Micromachined Ultrasonic Transducers (CMUTs) operating in immersion support dispersive evanescent waves due to the subwavelength periodic structure of electrostatically actuated membranes in the array. Evanescent wave characteristics also depend on the membrane resonance which is modified by the externally applied bias voltage, offering a mechanism to tune the CMUT array as an acoustic metamaterial. The dispersion and tunability characteristics are examined using a computationally efficient, mutual radiation impedance based approach to model a finite-size array and realistic parameters of variation. The simulations are verified, and tunability is demonstrated by experiments on a linear CMUT array operating in 2-12 MHz range.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA