Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Mol Ther ; 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39367605

RESUMEN

Enzymopathy disorders are the result of missing or defective enzymes. Among these enzymopathies, mucopolysaccharidosis type I is a rare genetic lysosomal storage disorder caused by mutations in the gene encoding alpha-L-iduronidase (IDUA), which ultimately causes toxic buildup of glycosaminoglycans (GAGs). There is currently no cure and standard treatments provide insufficient relief to the skeletal structure and central nervous system (CNS). Human memory T (Tm) cells migrate throughout the body's tissues and can persist for years, making them an attractive approach for cellular-based, systemic enzyme replacement therapy. Here, we tested genetically engineered, IDUA-expressing Tm cells as a cellular therapy in an immunodeficient mouse model of MPS I. Our results demonstrate that a single dose of engineered Tm cells leads to detectable IDUA enzyme levels in the blood for up to 22 weeks and reduced urinary GAG excretion. Furthermore, engineered Tm cells take up residence in nearly all tested tissues, producing IDUA and leading to metabolic correction of GAG levels in the heart, lung, liver, spleen, kidney, bone marrow, and the CNS, although only minimal improved cognition was observed. Our study indicates that genetically engineered Tm cells hold great promise as a platform for cellular-based enzyme replacement therapy for the treatment of mucopolysaccharidosis type I and potentially many other enzymopathies and protein deficiencies.

2.
Mol Genet Metab ; 138(4): 107539, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37023503

RESUMEN

Mucopolysaccharidosis type II (Hunter syndrome, MPS II) is an inherited X-linked recessive disease caused by deficiency of iduronate-2-sulfatase (IDS), resulting in the accumulation of the glycosaminoglycans (GAG) heparan and dermatan sulfates. Mouse models of MPS II have been used in several reports to study disease pathology and to conduct preclinical studies for current and next generation therapies. Here, we report the generation and characterization of an immunodeficient mouse model of MPS II, where CRISPR/Cas9 was employed to knock out a portion of the murine IDS gene on the NOD/SCID/Il2rγ (NSG) immunodeficient background. IDS-/- NSG mice lacked detectable IDS activity in plasma and all analyzed tissues and exhibited elevated levels of GAGs in those same tissues and in the urine. Histopathology revealed vacuolized cells in both the periphery and CNS of NSG-MPS II mice. This model recapitulates skeletal disease manifestations, such as increased zygomatic arch diameter and decreased femur length. Neurocognitive deficits in spatial memory and learning were also observed in the NSG-MPS II model. We anticipate that this new immunodeficient model will be appropriate for preclinical studies involving xenotransplantation of human cell products intended for the treatment of MPS II.


Asunto(s)
Iduronato Sulfatasa , Mucopolisacaridosis II , Humanos , Animales , Ratones , Mucopolisacaridosis II/terapia , Ratones Endogámicos NOD , Ratones SCID , Iduronato Sulfatasa/genética , Glicosaminoglicanos
3.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35955545

RESUMEN

Fanconi anemia (FA) is a rare genetic disease in which genes essential for DNA repair are mutated. Both the interstrand crosslink (ICL) and double-strand break (DSB) repair pathways are disrupted in FA, leading to patient bone marrow failure (BMF) and cancer predisposition. The only curative therapy for the hematological manifestations of FA is an allogeneic hematopoietic cell transplant (HCT); however, many (>70%) patients lack a suitable human leukocyte antigen (HLA)-matched donor, often resulting in increased rates of graft-versus-host disease (GvHD) and, potentially, the exacerbation of cancer risk. Successful engraftment of gene-corrected autologous hematopoietic stem cells (HSC) circumvents the need for an allogeneic HCT and has been achieved in other genetic diseases using targeted nucleases to induce site specific DSBs and the correction of mutated genes through homology-directed repair (HDR). However, this process is extremely inefficient in FA cells, as they are inherently deficient in DNA repair. Here, we demonstrate the correction of FANCA mutations in primary patient cells using 'digital' genome editing with the cytosine and adenine base editors (BEs). These Cas9-based tools allow for C:G > T:A or A:T > C:G base transitions without the induction of a toxic DSB or the need for a DNA donor molecule. These genetic corrections or conservative codon substitution strategies lead to phenotypic rescue as illustrated by a resistance to the alkylating crosslinking agent Mitomycin C (MMC). Further, FANCA protein expression was restored, and an intact FA pathway was demonstrated by downstream FANCD2 monoubiquitination induction. This BE digital correction strategy will enable the use of gene-corrected FA patient hematopoietic stem and progenitor cells (HSPCs) for autologous HCT, obviating the risks associated with allogeneic HCT and DSB induction during autologous HSC gene therapy.

4.
Int J Mol Sci ; 23(17)2022 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-36077152

RESUMEN

Monocytes and their downstream effectors are critical components of the innate immune system. Monocytes are equipped with chemokine receptors, allowing them to migrate to various tissues, where they can differentiate into macrophage and dendritic cell subsets and participate in tissue homeostasis, infection, autoimmune disease, and cancer. Enabling genome engineering in monocytes and their effector cells will facilitate a myriad of applications for basic and translational research. Here, we demonstrate that CRISPR-Cas9 RNPs can be used for efficient gene knockout in primary human monocytes. In addition, we demonstrate that intracellular RNases are likely responsible for poor and heterogenous mRNA expression as incorporation of pan-RNase inhibitor allows efficient genome engineering following mRNA-based delivery of Cas9 and base editor enzymes. Moreover, we demonstrate that CRISPR-Cas9 combined with an rAAV vector DNA donor template mediates site-specific insertion and expression of a transgene in primary human monocytes. Finally, we demonstrate that SIRPa knock-out monocyte-derived macrophages have enhanced activity against cancer cells, highlighting the potential for application in cellular immunotherapies.


Asunto(s)
Sistemas CRISPR-Cas , Ribonucleasas , Sistemas CRISPR-Cas/genética , Endorribonucleasas/genética , Edición Génica , Técnicas de Inactivación de Genes , Ingeniería Genética , Humanos , Monocitos , ARN Mensajero/genética , Ribonucleasas/genética
5.
Mol Ther ; 27(1): 178-187, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30528089

RESUMEN

Mucopolysaccharidosis type I (MPS I) is a severe disease due to deficiency of the lysosomal hydrolase α-L-iduronidase (IDUA) and the subsequent accumulation of the glycosaminoglycans (GAG), leading to progressive, systemic disease and a shortened lifespan. Current treatment options consist of hematopoietic stem cell transplantation, which carries significant mortality and morbidity risk, and enzyme replacement therapy, which requires lifelong infusions of replacement enzyme; neither provides adequate therapy, even in combination. A novel in vivo genome-editing approach is described in the murine model of Hurler syndrome. A corrective copy of the IDUA gene is inserted at the albumin locus in hepatocytes, leading to sustained enzyme expression, secretion from the liver into circulation, and subsequent uptake systemically at levels sufficient for correction of metabolic disease (GAG substrate accumulation) and prevention of neurobehavioral deficits in MPS I mice. This study serves as a proof-of-concept for this platform-based approach that should be broadly applicable to the treatment of a wide array of monogenic diseases.


Asunto(s)
Edición Génica/métodos , Terapia Genética/métodos , Mucopolisacaridosis I/terapia , Nucleasas con Dedos de Zinc/metabolismo , Animales , Modelos Animales de Enfermedad , Terapia de Reemplazo Enzimático , Femenino , Glicosaminoglicanos/metabolismo , Iduronidasa/metabolismo , Enfermedades por Almacenamiento Lisosomal/tratamiento farmacológico , Enfermedades por Almacenamiento Lisosomal/metabolismo , Enfermedades por Almacenamiento Lisosomal/terapia , Masculino , Ratones , Mucopolisacaridosis I/tratamiento farmacológico , Mucopolisacaridosis I/metabolismo , Nucleasas con Dedos de Zinc/genética
6.
Mol Ther ; 26(4): 1127-1136, 2018 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-29580682

RESUMEN

Mucopolysaccharidosis type II (MPS II) is an X-linked recessive lysosomal disorder caused by deficiency of iduronate 2-sulfatase (IDS), leading to accumulation of glycosaminoglycans (GAGs) in tissues of affected individuals, progressive disease, and shortened lifespan. Currently available enzyme replacement therapy (ERT) requires lifelong infusions and does not provide neurologic benefit. We utilized a zinc finger nuclease (ZFN)-targeting system to mediate genome editing for insertion of the human IDS (hIDS) coding sequence into a "safe harbor" site, intron 1 of the albumin locus in hepatocytes of an MPS II mouse model. Three dose levels of recombinant AAV2/8 vectors encoding a pair of ZFNs and a hIDS cDNA donor were administered systemically in MPS II mice. Supraphysiological, vector dose-dependent levels of IDS enzyme were observed in the circulation and peripheral organs of ZFN+donor-treated mice. GAG contents were markedly reduced in tissues from all ZFN+donor-treated groups. Surprisingly, we also demonstrate that ZFN-mediated genome editing prevented the development of neurocognitive deficit in young MPS II mice (6-9 weeks old) treated at high vector dose levels. We conclude that this ZFN-based platform for expression of therapeutic proteins from the albumin locus is a promising approach for treatment of MPS II and other lysosomal diseases.


Asunto(s)
Metabolismo Energético , Dosificación de Gen , Edición Génica , Iduronato Sulfatasa/genética , Mucopolisacaridosis II/genética , Mucopolisacaridosis II/metabolismo , Fenotipo , Animales , Biomarcadores , Modelos Animales de Enfermedad , Endonucleasas/genética , Endonucleasas/metabolismo , Activación Enzimática , Técnicas de Transferencia de Gen , Hepatocitos/metabolismo , Intrones , Ratones , Mucopolisacaridosis II/patología , Mucopolisacaridosis II/fisiopatología , Dedos de Zinc/genética
7.
Mol Ther Methods Clin Dev ; 32(2): 101253, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38764780

RESUMEN

CRISPR-Cas9 and novel cas fusion proteins leveraging specific DNA targeting ability combined with deaminases or reverse transcriptases have revolutionized genome editing. However, their efficacy heavily relies upon protein variants, targeting single guide RNAs, and surrounding DNA sequence context within the targeted loci. This necessitates the need for efficient and rapid screening methods to evaluate these editing reagents and designs. Existing plasmid-based reporters lack flexibility, being fixed to specific DNA sequences, hindering direct comparisons between various editing approaches. To address this, we developed the versatile genome editing application reporter (V-GEAR) system. V-GEAR comprises genes detectable after desired editing via base editing, prime editing, or homology-directed repair within relevant genomic contexts. It employs a detectable synthetic cell surface protein (RQR8) followed by a customizable target sequence resembling genomic regions of interest. These genes allow for reliable identification of corrective editing and cell enrichment. We validated the V-GEAR system with base editors, prime editors, and Cas9-mediated homology-directed repair. Furthermore, the V-GEAR system offers versatility by allowing transient screening or stable integration at the AAVS1 safe harbor loci, rapidly achieved through immunomagnetic isolation. This innovative system enables direct comparisons among editing technologies, accelerating the development and testing of genome editing approaches.

8.
bioRxiv ; 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38712248

RESUMEN

Enzymopathy disorders are the result of missing or defective enzymes. Amongst these enzymopathies, mucopolysaccharidosis type I, is a rare genetic lysosomal storage disorder caused by mutations in the gene encoding alpha-L-iduronidase (IDUA), ultimately causes toxic build-up of glycosaminoglycans (GAGs). There is currently no cure and standard treatments provide insufficient relief to the skeletal structure and central nervous system (CNS). Human memory T cells (Tm) migrate throughout the body's tissues and can persist for years, making them an attractive approach for cellular-based, systemic enzyme replacement therapy. Here, we tested genetically engineered, IDUA-expressing Tm as a cellular therapy in an immunodeficient mouse model of MPS I. Our results demonstrate that a single dose of engineered Tm leads to detectable IDUA enzyme levels in the blood for up to 22 weeks and reduced urinary GAG excretion. Furthermore, engineered Tm take up residence in nearly all tested tissues, producing IDUA and leading to metabolic correction of GAG levels in the heart, lung, liver, spleen, kidney, bone marrow, and the CNS. Our study indicates that genetically engineered Tm holds great promise as a platform for cellular-based enzyme replacement therapy for the treatment of mucopolysaccharidosis type I and potentially many other enzymopathies and protein deficiencies.

9.
bioRxiv ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38496503

RESUMEN

Natural killer (NK) cells' unique ability to kill transformed cells expressing stress ligands or lacking major histocompatibility complexes (MHC) has prompted their development for immunotherapy. However, NK cells have demonstrated only moderate responses against cancer in clinical trials and likely require advanced genome engineering to reach their full potential as a cancer therapeutic. Multiplex genome editing with CRISPR/Cas9 base editors (BE) has been used to enhance T cell function and has already entered clinical trials but has not been reported in human NK cells. Here, we report the first application of BE in primary NK cells to achieve both loss-of-function and gain-of-function mutations. We observed highly efficient single and multiplex base editing, resulting in significantly enhanced NK cell function. Next, we combined multiplex BE with non-viral TcBuster transposon-based integration to generate IL-15 armored CD19 CAR-NK cells with significantly improved functionality in a highly suppressive model of Burkitt's lymphoma both in vitro and in vivo. The use of concomitant non-viral transposon engineering with multiplex base editing thus represents a highly versatile and efficient platform to generate CAR-NK products for cell-based immunotherapy and affords the flexibility to tailor multiple gene edits to maximize the effectiveness of the therapy for the cancer type being treated.

10.
Hum Gene Ther ; 34(1-2): 8-18, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36541357

RESUMEN

The mucopolysaccharidoses (MPS) are a group of recessively inherited conditions caused by deficiency of lysosomal enzymes essential to the catabolism of glycosaminoglycans (GAG). MPS I is caused by deficiency of the lysosomal enzyme alpha-L-iduronidase (IDUA), while MPS II is caused by a lack of iduronate-2-sulfatase (IDS). Lack of these enzymes leads to early mortality and morbidity, often including neurological deficits. Enzyme replacement therapy has markedly improved the quality of life for MPS I and MPS II affected individuals but is not effective in addressing neurologic manifestations. For MPS I, hematopoietic stem cell transplant has shown effectiveness in mitigating the progression of neurologic disease when carried out in early in life, but neurologic function is not restored in patients transplanted later in life. For both MPS I and II, gene therapy has been shown to prevent neurologic deficits in affected mice when administered early, but the effectiveness of treatment after the onset of neurologic disease manifestations has not been characterized. To test if neurocognitive function can be recovered in older animals, human IDUA or IDS-encoding AAV9 vector was administered by intracerebroventricular injection into MPS I and MPS II mice, respectively, after the development of neurologic deficit. Vector sequences were distributed throughout the brains of treated animals, associated with high levels of enzyme activity and normalized GAG storage. Two months after vector infusion, treated mice exhibited spatial navigation and learning skills that were normalized, that is, indistinguishable from those of normal unaffected mice, and significantly improved compared to untreated, affected animals. We conclude that cognitive function was restored by AAV9-mediated, central nervous system (CNS)-directed gene transfer in the murine models of MPS I and MPS II, suggesting that gene transfer may result in neurodevelopment improvements in severe MPS I and MPS II when carried out after the onset of cognitive decline.


Asunto(s)
Disfunción Cognitiva , Iduronato Sulfatasa , Mucopolisacaridosis II , Mucopolisacaridosis I , Enfermedades del Sistema Nervioso , Humanos , Animales , Ratones , Anciano , Calidad de Vida , Mucopolisacaridosis II/genética , Mucopolisacaridosis II/terapia , Mucopolisacaridosis I/genética , Mucopolisacaridosis I/terapia , Sistema Nervioso Central/metabolismo , Iduronidasa/genética , Iduronidasa/metabolismo , Iduronato Sulfatasa/genética , Disfunción Cognitiva/metabolismo , Glicosaminoglicanos/metabolismo , Modelos Animales de Enfermedad
11.
Mol Genet Metab Rep ; 34: 100956, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36704405

RESUMEN

Hunter syndrome is a rare x-linked recessive genetic disorder that affects lysosomal metabolism due to deficiency of iduronate-2-sulfatase (IDS), with subsequent accumulation of glycosaminoglycans heparan and dermatan sulfates (GAG). Enzyme replacement therapy is the only FDA-approved remedy and is an expensive life-time treatment that alleviates some symptoms of the disease without neurocognitive benefit. We previously reported successful treatment in a mouse model of mucopolysaccharidosis type II (MPS II) using adeno-associated viral vector serotype 9 encoding human IDS (AAV9.hIDS) via intracerebroventricular injection. As a less invasive and more straightforward procedure, here we report intravenously administered AAV9.hIDS in a mouse model of MPS II. In animals administered 1.5 × 1012 vg of AAV9.hIDS at 2 months of age, we observed supraphysiological levels of IDS enzyme activity in the circulation (up to 9100-fold higher than wild-type), in the tested peripheral organs (up to 560-fold higher than wild-type), but only 4% to 50% of wild type levels in the CNS. GAG levels were normalized on both sides of the blood-brain-barrier (BBB) in most of tissues tested. Despite low levels of the IDS observed in the CNS, this treatment prevented neurocognitive decline as shown by testing in the Barnes maze and by fear conditioning. This study demonstrates that a single dose of IV-administered AAV9.hIDS may be an effective and non-invasive procedure to treat MPS II that benefits both sides of the BBB, with implications for potential use of IV-administered AAV9 for other neuronopathic lysosomal diseases.

12.
Methods Mol Biol ; 2115: 435-444, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32006415

RESUMEN

The CRISPR/Cas9 system allows for site-specific gene editing and genome engineering of primary human cells. Here we describe methods for gene editing and genome engineering of B cells isolated from human peripheral blood mononuclear cells using CRISPR/Cas9. Editing frequencies of up to 90% and integration rates greater than 60% can be achieved with this method.


Asunto(s)
Linfocitos B/metabolismo , Sistemas CRISPR-Cas , Edición Génica/métodos , Linfocitos B/citología , Células Cultivadas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Humanos , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/metabolismo
13.
J Vis Exp ; (165)2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33226023

RESUMEN

B cells are lymphocytes derived from hematopoietic stem cells and are a key component of the humoral arm of the adaptive immune system. They make attractive candidates for cell-based therapies because of their ease of isolation from peripheral blood, their ability to expand in vitro, and their longevity in vivo. Additionally, their normal biological function-to produce large amounts of antibodies-can be utilized to express very large amounts of a therapeutic protein, such as a recombinant antibody to fight infection, or an enzyme for the treatment of enzymopathies. Here, we provide detailed methods for isolating primary human B cells from peripheral blood mononuclear cells (PBMCs) and activating/expanding isolated B cells in vitro. We then demonstrate the steps involved in using the CRISPR/Cas9 system for site-specific KO of endogenous genes in B cells. This method allows for efficient KO of various genes, which can be used to study the biological functions of genes of interest. We then demonstrate the steps for using the CRISPR/Cas9 system together with a recombinant, adeno-associated, viral (rAAV) vector for efficient site-specific integration of a transgene expression cassette in B cells. Together, this protocol provides a step-by-step engineering platform that can be used in primary human B cells to study biological functions of genes as well as for the development of B-cell therapeutics.


Asunto(s)
Linfocitos B/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Ingeniería Genética/métodos , Genoma Humano , Antígenos CD19/metabolismo , Linfocitos B/citología , Secuencia de Bases , Proliferación Celular , Células Cultivadas , Dependovirus/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Mutación INDEL/genética
14.
Mol Cancer Ther ; 19(12): 2528-2541, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32999043

RESUMEN

We previously identified ZNF217 as an oncogenic driver of a subset of osteosarcomas using the Sleeping Beauty (SB) transposon system. Here, we followed up by investigating the genetic role of ZNF217 in osteosarcoma initiation and progression through the establishment of a novel genetically engineered mouse model, in vitro assays, orthotopic mouse studies, and paired these findings with preclinical studies using a small-molecule inhibitor. Throughout, we demonstrate that ZNF217 is coupled to numerous facets of osteosarcoma transformation, including proliferation, cell motility, and anchorage independent growth, and ultimately promoting osteosarcoma growth, progression, and metastasis in part through positive modulation of PI3K-AKT survival signaling. Pharmacologic blockade of AKT signaling with nucleoside analogue triciribine in ZNF217+ orthotopically injected osteosarcoma cell lines reduced tumor growth and metastasis. Our data demonstrate that triciribine treatment may be a relevant and efficacious therapeutic strategy for patients with osteosarcoma with ZNF217+ and p-AKT rich tumors. With the recent revitalization of triciribine for clinical studies in other solid cancers, our study provides a rationale for further evaluation preclinically with the purpose of clinical evaluation in patients with incurable, ZNF217+ osteosarcoma.


Asunto(s)
Biomarcadores de Tumor , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Transactivadores/genética , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular , Modelos Animales de Enfermedad , Expresión Génica Ectópica , Amplificación de Genes , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Modelos Biológicos , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/etiología , Osteosarcoma/metabolismo , Osteosarcoma/patología , Transducción de Señal/efectos de los fármacos , Transactivadores/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Bone ; 136: 115353, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32251854

RESUMEN

Osteosarcoma (OSA) is a heterogeneous and aggressive solid tumor of the bone. We recently identified the colony stimulating factor 1 receptor (Csf1r) gene as a novel driver of osteosarcomagenesis in mice using the Sleeping Beauty (SB) transposon mutagenesis system. Here, we report that a CSF1R-CSF1 autocrine/paracrine signaling mechanism is constitutively activated in a subset of human OSA cases and is critical for promoting tumor growth and contributes to metastasis. We examined CSF1R and CSF1 expression in OSAs. We utilized gain-of-function and loss-of-function studies (GOF/LOF) to evaluate properties of cellular transformation, downstream signaling, and mechanisms of CSF1R-CSF1 action. Genetic perturbation of CSF1R in immortalized osteoblasts and human OSA cell lines significantly altered oncogenic properties, which were dependent on the CSF1R-CSF1 autocrine/paracrine signaling. These functional alterations were associated with changes in the known CSF1R downstream ERK effector pathway and mitotic cell cycle arrest. We evaluated the recently FDA-approved CSF1R inhibitor Pexidartinib (PLX3397) in OSA cell lines in vitro and in vivo in cell line and patient-derived xenografts. Pharmacological inhibition of CSF1R signaling recapitulated the in vitro genetic alterations. Moreover, in orthotopic OSA cell line and subcutaneous patient-derived xenograft (PDX)-injected mouse models, PLX3397 treatment significantly inhibited local OSA tumor growth and lessened metastatic burden. In summary, CSF1R is utilized by OSA cells to promote tumorigenesis and may represent a new molecular target for therapy.


Asunto(s)
Factor Estimulante de Colonias de Macrófagos , Osteosarcoma , Aminopiridinas , Animales , Carcinogénesis , Ratones , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/genética , Pirroles , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos
16.
Sci Rep ; 8(1): 12144, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30108345

RESUMEN

B cells offer unique opportunities for gene therapy because of their ability to secrete large amounts of protein in the form of antibody and persist for the life of the organism as plasma cells. Here, we report optimized CRISPR/Cas9 based genome engineering of primary human B cells. Our procedure involves enrichment of CD19+ B cells from PBMCs followed by activation, expansion, and electroporation of CRISPR/Cas9 reagents. We are able expand total B cells in culture 10-fold and outgrow the IgD+ IgM+ CD27- naïve subset from 35% to over 80% of the culture. B cells are receptive to nucleic acid delivery via electroporation 3 days after stimulation, peaking at Day 7 post stimulation. We tested chemically modified sgRNAs and Alt-R gRNAs targeting CD19 with Cas9 mRNA or Cas9 protein. Using this system, we achieved genetic and protein knockout of CD19 at rates over 70%. Finally, we tested sgRNAs targeting the AAVS1 safe harbor site using Cas9 protein in combination with AAV6 to deliver donor template encoding a splice acceptor-EGFP cassette, which yielded site-specific integration frequencies up to 25%. The development of methods for genetically engineered B cells opens the door to a myriad of applications in basic research, antibody production, and cellular therapeutics.


Asunto(s)
Linfocitos B/metabolismo , Ingeniería Celular/métodos , Endonucleasas/genética , Ingeniería Genética/métodos , Antígenos CD19/genética , Antígenos CD19/metabolismo , Sistemas CRISPR-Cas/genética , Células Cultivadas , Electroporación , Técnicas de Inactivación de Genes/métodos , Voluntarios Sanos , Humanos , Cultivo Primario de Células , ARN Guía de Kinetoplastida/genética
18.
Hum Gene Ther ; 28(8): 626-638, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28478695

RESUMEN

Mucopolysaccharidosis type II (MPS II; Hunter syndrome) is a rare X-linked recessive lysosomal disorder caused by defective iduronate-2-sulfatase (IDS), resulting in accumulation of heparan sulfate and dermatan sulfate glycosaminoglycans (GAGs). Enzyme replacement is the only Food and Drug Administration-approved therapy available for MPS II, but it is expensive and does not improve neurologic outcomes in MPS II patients. This study evaluated the effectiveness of adeno-associated virus (AAV) vector encoding human IDS delivered intracerebroventricularly in a murine model of MPS II. Supraphysiological levels of IDS were observed in the circulation (160-fold higher than wild type) for at least 28 weeks post injection and in most tested peripheral organs (up to 270-fold) at 10 months post injection. In contrast, only low levels of IDS were observed (7-40% of wild type) in all areas of the brain. Sustained IDS expression had a profound effect on normalization of GAG in all tested tissues and on prevention of hepatomegaly. Additionally, sustained IDS expression in the central nervous system (CNS) had a prominent effect in preventing neurocognitive deficit in MPS II mice treated at 2 months of age. This study demonstrates that CNS-directed, AAV9 mediated gene transfer is a potentially effective treatment for Hunter syndrome, as well as other monogenic disorders with neurologic involvement.


Asunto(s)
Dependovirus/genética , Técnicas de Transferencia de Gen , Terapia Genética , Vectores Genéticos/genética , Iduronato Sulfatasa/genética , Mucopolisacaridosis II/genética , Mucopolisacaridosis II/psicología , Animales , Sistema Nervioso Central/metabolismo , Cognición , Modelos Animales de Enfermedad , Activación Enzimática , Femenino , Expresión Génica , Orden Génico , Vectores Genéticos/administración & dosificación , Glicosaminoglicanos/metabolismo , Humanos , Iduronato Sulfatasa/sangre , Iduronato Sulfatasa/metabolismo , Masculino , Ratones , Mucopolisacaridosis II/sangre , Mucopolisacaridosis II/terapia , Pruebas Neuropsicológicas , Proyectos Piloto , Factores de Tiempo , Distribución Tisular , Transducción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA