Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Sci Health B ; 56(9): 852-859, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34405759

RESUMEN

Growth traits, yield, N content, photosynthetic pigments, ammonia and amino acids were measured to verify the effect of the interaction between N, Ni, and 2,4-D applied in the cotton crop. The objective was to study the hormonal effect of 2,4-D associated with the application of N and Ni in coverage to improve yield. The N (0, 40, 80, and 120 kg ha-1) and Ni(0, 300, 450, and 600 g ha-1) were applied to the soil in the square phenological growth stage. The commercial 2,4-D DMA® BR (0 and 1.8 g a.e ha-1) was applied to the leaves at the same growth stage. The supply of N in cover fertilization up to 120 kg ha-1 was beneficial for cotton, providing greater yield and content of photosynthetic pigments. The application of 2,4-D in a hormetic dose, as a synthetic auxin during the beginning of flowering, proved to be a promising technique to improve cotton yield. This end-of-cycle response is related to the requirement for auxins during the cotton fruiting process.


Asunto(s)
Níquel , Nitrógeno , Ácido 2,4-Diclorofenoxiacético , Gossypium , Nitrógeno/análisis , Suelo
2.
Physiol Mol Biol Plants ; 26(8): 1635-1648, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32801492

RESUMEN

Soil waterlogging is a common problem in some agricultural areas, including regions under soybean (Glycine max) cultivation. In waterlogged soils, soil O2 depletion occurs due to aerobic microorganisms and plants, affecting the metabolic and physiological processes of plants after suffering anoxia in their root tissue. Another harmful factor in this situation is the exponential increase in the availability of iron (Fe) in the soil, which may result in absorption of excess Fe. The present study sought to evaluate the response mechanisms in soybean leaves 'Agroeste 3680' by physiological and biochemical analyses associating them with the development of pods in non-waterlogged and waterlogged soil, combined with one moderate and two toxic levels of Fe. Gas exchange was strongly affected by soil waterlogging. Excess Fe without soil waterlogging reduced photosynthetic pigments, and potentiated this reduction when associated with soil waterlogging. Starch and ureide accumulation in the first newly expanded trifoliate leaves proved to be response mechanisms induced by soil waterlogging and excess Fe, since plants cultivated under soil non-waterlogged soil at 25 mg dm-3 Fe showed lower contents when compared to stressed plants. Thus, starch and ureide accumulation could be considered efficient biomarkers of phytotoxicity caused by soil waterlogging and excess Fe in soybean plants. The reproductive development was abruptly interrupted by the imposition of stresses, leading to a loss of pod dry biomass, which was largely due to the substantial decrease in the net photosynthetic rate, as expressed by area (A), the blockage of carbohydrate transport to sink tissues and an increase of malondialdehyde (MDA). The negative effect on reproductive development was more pronounced under waterlogged soil.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA