Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Comp Med ; 56(6): 482-6, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17219778

RESUMEN

Chronic kidney disease is a substantial medical and economic burden. Animal models, including mice, are a crucial component of kidney disease research; however, recent studies disprove the ability of autoanalyzer methods to accurately quantify plasma creatinine levels, an established marker of kidney disease, in mice. Therefore, we validated autoanalyzer methods for measuring blood urea nitrogen (BUN) and urinary albumin concentrations, 2 common markers of kidney disease, in samples from mice. We used high-performance liquid chromatography to validate BUN concentrations measured using an autoanalyzer, and we utilized mouse albumin standards to determine the accuracy of the autoanalyzer over a wide range of albumin concentrations. We observed a significant, linear correlation between BUN concentrations measured by autoanalyzer and high-performance liquid chromatography. We also found a linear relationship between known and measured albumin concentrations, although the autoanalyzer method underestimated the known amount of albumin by 3.5- to 4-fold. We confirmed that plasma and urine constituents do not interfere with the autoanalyzer methods for measuring BUN and urinary albumin concentrations. In addition, we verified BUN and albuminuria as useful markers to detect kidney disease in aged mice and mice with 5/6-nephrectomy. We conclude that autoanalyzer methods are suitable for high-throughput analysis of BUN and albumin concentrations in mice. The autoanalyzer accurately quantifies BUN concentrations in mouse plasma samples and is useful for measuring urinary albumin concentrations when used with mouse albumin standards.


Asunto(s)
Albuminuria/orina , Análisis Químico de la Sangre/métodos , Nitrógeno de la Urea Sanguínea , Urinálisis/métodos , Albúminas/normas , Animales , Autoanálisis/métodos , Autoanálisis/normas , Análisis Químico de la Sangre/normas , Cromatografía Líquida de Alta Presión/métodos , Modelos Animales de Enfermedad , Fallo Renal Crónico/sangre , Fallo Renal Crónico/orina , Masculino , Ratones , Ratones Endogámicos A , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Estándares de Referencia , Especificidad de la Especie
2.
J Vis Exp ; (69)2012 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-23207870

RESUMEN

Glioma is the one of the most lethal forms of human cancer. The most effective glioma therapy to date-surgery followed by radiation treatment-offers patients only modest benefits, as most patients do not survive more than five years following diagnosis due to glioma relapse (1,2). The discovery of cancer stem cells in human brain tumors holds promise for having an enormous impact on the development of novel therapeutic strategies for glioma (3). Cancer stem cells are defined by their ability both to self-renew and to differentiate, and are thought to be the only cells in a tumor that have the capacity to initiate new tumors (4). Glioma relapse following radiation therapy is thought to arise from resistance of glioma stem cells (GSCs) to therapy (5-10). In vivo, GSCs are shown to reside in a perivascular niche that is important for maintaining their stem cell-like characteristics (11-14). Central to the organization of the GSC niche are vascular endothelial cells (12). Existing evidence suggests that GSCs and their interaction with the vascular endothelial cells are important for tumor development, and identify GSCs and their interaction with endothelial cells as important therapeutic targets for glioma. The presence of GSCs is determined experimentally by their capability to initiate new tumors upon orthotopic transplantation (15). This is typically achieved by injecting a specific number of GBM cells isolated from human tumors into the brains of severely immuno-deficient mice, or of mouse GBM cells into the brains of congenic host mice. Assays for tumor growth are then performed following sufficient time to allow GSCs among the injected GBM cells to give rise to new tumors-typically several weeks or months. Hence, existing assays do not allow examination of the important pathological process of tumor initiation from single GSCs in vivo. Consequently, essential insights into the specific roles of GSCs and their interaction with the vascular endothelial cells in the early stages of tumor initiation are lacking. Such insights are critical for developing novel therapeutic strategies for glioma, and will have great implications for preventing glioma relapse in patients. Here we have adapted the PoRTS cranial window procedure (16)and in vivo two-photon microscopy to allow visualization of tumor initiation from injected GBM cells in the brain of a live mouse. Our technique will pave the way for future efforts to elucidate the key signaling mechanisms between GSCs and vascular endothelial cells during glioma initiation.


Asunto(s)
Neoplasias Encefálicas/patología , Transformación Celular Neoplásica/patología , Glioma/patología , Células Madre Neoplásicas/patología , Cráneo/cirugía , Animales , Neoplasias Encefálicas/irrigación sanguínea , Glioma/irrigación sanguínea , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA