Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nature ; 429(6991): 571-4, 2004 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-15175754

RESUMEN

Transcription by RNA polymerase II in Saccharomyces cerevisiae and in humans is widespread, even in genomic regions that do not encode proteins. The purpose of such intergenic transcription is largely unknown, although it can be regulatory. We have discovered a role for one case of intergenic transcription by studying the S. cerevisiae SER3 gene. Our previous results demonstrated that transcription of SER3 is tightly repressed during growth in rich medium. We now show that the regulatory region of this gene is highly transcribed under these conditions and produces a non-protein-coding RNA (SRG1). Expression of the SRG1 RNA is required for repression of SER3. Additional experiments have demonstrated that repression occurs by a transcription-interference mechanism in which SRG1 transcription across the SER3 promoter interferes with the binding of activators. This work identifies a previously unknown class of transcriptional regulatory genes.


Asunto(s)
Deshidrogenasas de Carbohidratos/genética , ADN Intergénico/genética , Regulación Fúngica de la Expresión Génica , Genes Fúngicos/genética , ARN no Traducido/genética , Saccharomyces cerevisiae/genética , Transcripción Genética/genética , Secuencia de Bases , Regulación hacia Abajo/genética , Fosfoglicerato-Deshidrogenasa , Regiones Promotoras Genéticas/genética , ARN de Hongos/biosíntesis , ARN de Hongos/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Saccharomyces cerevisiae/citología
2.
Sci Adv ; 6(17): eaay9226, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32426461

RESUMEN

Rhodoxanthin is a vibrant red carotenoid found across the plant kingdom and in certain birds and fish. It is a member of the atypical retro class of carotenoids, which contain an additional double bond and a concerted shift of the conjugated double bonds relative to the more widely occurring carotenoid pigments, and whose biosynthetic origins have long remained elusive. Here, we identify LHRS (Lonicera hydroxylase rhodoxanthin synthase), a variant ß-carotene hydroxylase (BCH)-type integral membrane diiron enzyme that mediates the conversion of ß-carotene into rhodoxanthin. We identify residues that are critical to rhodoxanthin formation by LHRS. Substitution of only three residues converts a typical BCH into a multifunctional enzyme that mediates a multistep pathway from ß-carotene to rhodoxanthin via a series of distinct oxidation steps in which the product of each step becomes the substrate for the next catalytic cycle. We propose a biosynthetic pathway from ß-carotene to rhodoxanthin.

3.
Genetics ; 177(4): 2007-17, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18073420

RESUMEN

The Spt-Ada-Gcn5-acetyltransferase (SAGA) complex of Saccharomyces cerevisiae is a multifunctional coactivator complex that has been shown to regulate transcription by distinct mechanisms. Previous results have shown that the Spt3 and Spt8 components of SAGA regulate initiation of transcription of particular genes by controlling the level of TATA-binding protein (TBP/Spt15) associated with the TATA box. While biochemical evidence exists for direct Spt8-TBP interactions, similar evidence for Spt3-TBP interactions has been lacking. To learn more about Spt3-TBP interactions in vivo, we have isolated a new class of spt3 mutations that cause a dominant-negative phenotype when overexpressed. These mutations all cluster within a conserved region of Spt3. The isolation of extragenic suppressors of one of these spt3 mutations has identified two new spt15 mutations that show allele-specific interactions with spt3 mutations with respect to transcription and the recruitment of TBP to particular promoters. In addition, these new spt15 mutations partially bypass an spt8 null mutation. Finally, we have examined the level of SAGA-TBP physical interaction in these mutants. While most spt3, spt8, and spt15 mutations do not alter SAGA-TBP interactions, one spt3 mutation, spt3-401, causes a greatly increased level of SAGA-TBP physical association. These results, taken together, suggest that a direct Spt3-TBP interaction is required for normal TBP levels at Spt3-dependent promoters in vivo.


Asunto(s)
Alelos , Mutación , Proteínas de Saccharomyces cerevisiae/genética , Proteína de Unión a TATA-Box/genética , Factores de Transcripción/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína de Unión a TATA-Box/metabolismo , Transactivadores , Transcripción Genética
4.
Genetics ; 173(1): 435-50, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16415367

RESUMEN

Histones are essential for the compaction of DNA into chromatin and therefore participate in all chromosomal functions. Specific mutations in HTA1, one of the two Saccharomyces cerevisiae genes encoding histone H2A, have been previously shown to cause chromosome segregation defects, including an increase in ploidy associated with altered pericentromeric chromatin structure, suggesting a role for histone H2A in kinetochore function. To identify proteins that may interact with histone H2A in the control of ploidy and chromosome segregation, we performed a genetic screen for suppressors of the increase-in-ploidy phenotype associated with one of the H2A mutations. We identified five genes, HHT1, MKS1, HDA1, HDA2, and HDA3, four of which encode proteins directly connected to chromatin function: histone H3 and each of the three subunits of the Hda1 histone deacetylase complex. Our results show that Hda3 has functions distinct from Hda2 and Hda1 and that it is required for normal chromosome segregation and cell cycle progression. In addition, HDA3 shows genetic interactions with kinetochore components, emphasizing a role in centromere function, and all three Hda proteins show association with centromeric DNA. These findings suggest that the Hda1 deacetylase complex affects histone function at the centromere and that Hda3 has a distinctive participation in chromosome segregation. Moreover, these suppressors provide the basis for future studies regarding histone function in chromosome segregation.


Asunto(s)
Segregación Cromosómica/genética , Histona Desacetilasas/metabolismo , Histonas/genética , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Supresión Genética/genética , Alelos , Ciclo Celular/genética , Cromatina/genética , Cromosomas Fúngicos/genética , ADN de Hongos/genética , Proteínas Fúngicas/genética , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Genes Fúngicos/genética , Cinetocoros , Mutación/genética , Fenotipo , Ploidias , ARN Mensajero/genética , ARN Mensajero/metabolismo
5.
Genetics ; 161(2): 509-19, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12072450

RESUMEN

Spt3 of Saccharomyces cerevisiae is required for the normal transcription of many genes in vivo. Past studies have shown that Spt3 is required for both mating and sporulation, two events that initiate when cells are at G(1)/START. We now show that Spt3 is needed for two other events that begin at G(1)/START, diploid filamentous growth and haploid invasive growth. In addition, Spt3 is required for normal expression of FLO11, a gene required for filamentous growth, although this defect is not the sole cause of the spt3Delta/spt3Delta filamentous growth defect. To extend our studies of Spt3's role in filamentous growth to the pathogenic yeast Candida albicans, we have identified the C. albicans SPT3 gene and have studied its role in C. albicans filamentous growth and virulence. Surprisingly, C. albicans spt3Delta/spt3Delta mutants are hyperfilamentous, the opposite phenotype observed for S. cerevisiae spt3Delta/spt3Delta mutants. Furthermore, C. albicans spt3Delta/spt3Delta mutants are avirulent in mice. These experiments demonstrate that Spt3 plays important but opposite roles in filamentous growth in S. cerevisiae and C. albicans.


Asunto(s)
Candida albicans/crecimiento & desarrollo , Proteínas Fúngicas/fisiología , Saccharomyces cerevisiae/crecimiento & desarrollo , Animales , Candida albicans/genética , Candida albicans/patogenicidad , Proteínas Fúngicas/genética , Glicoproteínas de Membrana , Proteínas de la Membrana/genética , Ratones , Datos de Secuencia Molecular , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Factores de Transcripción , Virulencia
6.
Hum Mol Genet ; 14(5): 667-77, 2005 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-15661756

RESUMEN

We have identified waved 3 (wa3), a novel recessive mutation that causes abnormalities of the heart and skin. The cardiac defect results in a severe and rapidly progressive dilated cardiomyopathy. We identified the gene mutated in these mice, which we call NFkB interacting protein1 (Nkip1), using positional cloning. Nkip1 is expressed in skin, heart and vascular endothelium and shares homology with a small family of proteins that play a role in the regulation of transcription factors. A C-terminal fragment of this protein was previously identified as the RelA associated inhibitor (RAI). We show that the full-length protein is larger than previously described, and we confirm that it interacts with NFkB in vivo. Expression analysis of genes known to be regulated by NFkB revealed that Intercellular adhesion molecule 1 (Icam1) expression is consistently elevated in mutant mice. This result suggests that wa3 mutant mice represent a potentially important model for the analysis of the role of inflammatory processes in heart disease.


Asunto(s)
Cardiomiopatías/genética , Mutación , FN-kappa B/metabolismo , Proteínas Represoras/genética , Anomalías Cutáneas/genética , Piel/embriología , Animales , Cardiomiopatías/metabolismo , Mapeo Cromosómico , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/patología , Péptidos y Proteínas de Señalización Intracelular , Ratones , Miocardio/patología , Proteínas Represoras/metabolismo , Análisis de Secuencia de ADN , Análisis de Secuencia de Proteína , Piel/patología , Anomalías Cutáneas/patología
7.
Science ; 301(5636): 1096-9, 2003 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-12934008

RESUMEN

Previous studies have suggested that transcription elongation results in changes in chromatin structure. Here we present studies of Saccharomyces cerevisiae Spt6, a conserved protein implicated in both transcription elongation and chromatin structure. Our results show that, surprisingly, an spt6 mutant permits aberrant transcription initiation from within coding regions. Furthermore, transcribed chromatin in the spt6 mutant is hypersensitive to micrococcal nuclease, and this hypersensitivity is suppressed by mutational inactivation of RNA polymerase II. These results suggest that Spt6 plays a critical role in maintaining normal chromatin structure during transcription elongation, thereby repressing transcription initiation from cryptic promoters. Other elongation and chromatin factors, including Spt16 and histone H3, appear to contribute to this control.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Transcripción Genética , Factores de Elongación Transcripcional/metabolismo , Cromatina/metabolismo , Genes Fúngicos , Chaperonas de Histonas , Histonas/metabolismo , Mutación , Proteínas Nucleares/genética , Nucleosomas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Polimerasa II/metabolismo , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteína de Unión a TATA-Box/metabolismo , Transactivadores/genética , Factores de Elongación Transcripcional/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA