Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Genes Dev ; 32(5-6): 430-447, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29549180

RESUMEN

The p53 tumor suppressor protein is the most well studied as a regulator of transcription in the nucleus, where it exists primarily as a tetramer. However, there are other oligomeric states of p53 that are relevant to its regulation and activities. In unstressed cells, p53 is normally held in check by MDM2 that targets p53 for transcriptional repression, proteasomal degradation, and cytoplasmic localization. Here we discovered a hydrophobic region within the MDM2 N-terminal domain that binds exclusively to the dimeric form of the p53 C-terminal domain in vitro. In cell-based assays, MDM2 exhibits superior binding to, hyperdegradation of, and increased nuclear exclusion of dimeric p53 when compared with tetrameric wild-type p53. Correspondingly, impairing the hydrophobicity of the newly identified N-terminal MDM2 region leads to p53 stabilization. Interestingly, we found that dimeric mutant p53 is partially unfolded and is a target for ubiquitin-independent degradation by the 20S proteasome. Finally, forcing certain tumor-derived mutant forms of p53 into dimer configuration results in hyperdegradation of mutant p53 and inhibition of p53-mediated cancer cell migration. Gaining insight into different oligomeric forms of p53 may provide novel approaches to cancer therapy.


Asunto(s)
Neoplasias/fisiopatología , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular Tumoral , Citoplasma/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Mutación , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Dominios Proteicos , Multimerización de Proteína/genética , Proteolisis , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/genética
2.
Genes Dev ; 31(10): 955-956, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28637690

RESUMEN

Long understood as a bona fide tumor suppressor that safeguards the integrity of the genome via regulating numerous cellular outcomes, p53 may also exert its decisive and versatile functions by controlling DNA methylation. In this issue of Genes & Development, Tovy and colleagues (pp. 959-972) report that, in naïve mouse embryonic stem cells (ESCs), p53 controls DNA methylation homeostasis by regulating the expression of key counteracting components of the DNA methylation machinery. Their findings indicate that p53 may exert its "guardian of genome" duties at least in part via safeguarding the epigenome of ESCs.


Asunto(s)
Epigénesis Genética/genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , Metilación de ADN/genética , Regulación Neoplásica de la Expresión Génica , Proteína p53 Supresora de Tumor/genética
3.
Mol Cell ; 57(6): 1034-1046, 2015 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-25794615

RESUMEN

DNA binding by numerous transcription factors including the p53 tumor suppressor protein constitutes a vital early step in transcriptional activation. While the role of the central core DNA binding domain (DBD) of p53 in site-specific DNA binding has been established, the contribution of the sequence-independent C-terminal domain (CTD) is still not well understood. We investigated the DNA-binding properties of a series of p53 CTD variants using a combination of in vitro biochemical analyses and in vivo binding experiments. Our results provide several unanticipated and interconnected findings. First, the CTD enables DNA binding in a sequence-dependent manner that is drastically altered by either its modification or deletion. Second, dependence on the CTD correlates with the extent to which the p53 binding site deviates from the canonical consensus sequence. Third, the CTD enables stable formation of p53-DNA complexes to divergent binding sites via DNA-induced conformational changes within the DBD itself.


Asunto(s)
ADN/metabolismo , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/metabolismo , Sitios de Unión , ADN/química , Humanos , Ligandos , Estructura Terciaria de Proteína , Elementos de Respuesta , Eliminación de Secuencia , Proteína p53 Supresora de Tumor/genética
4.
Genes Dev ; 29(12): 1298-315, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-26080815

RESUMEN

Mutant p53 impacts the expression of numerous genes at the level of transcription to mediate oncogenesis. We identified vascular endothelial growth factor receptor 2 (VEGFR2), the primary functional VEGF receptor that mediates endothelial cell vascularization, as a mutant p53 transcriptional target in multiple breast cancer cell lines. Up-regulation of VEGFR2 mediates the role of mutant p53 in increasing cellular growth in two-dimensional (2D) and three-dimensional (3D) culture conditions. Mutant p53 binds near the VEGFR2 promoter transcriptional start site and plays a role in maintaining an open conformation at that location. Relatedly, mutant p53 interacts with the SWI/SNF complex, which is required for remodeling the VEGFR2 promoter. By both querying individual genes regulated by mutant p53 and performing RNA sequencing, the results indicate that >40% of all mutant p53-regulated gene expression is mediated by SWI/SNF. We surmise that mutant p53 impacts transcription of VEGFR2 as well as myriad other genes by promoter remodeling through interaction with and likely regulation of the SWI/SNF chromatin remodeling complex. Therefore, not only might mutant p53-expressing tumors be susceptible to anti VEGF therapies, impacting SWI/SNF tumor suppressor function in mutant p53 tumors may also have therapeutic potential.


Asunto(s)
Neoplasias de la Mama/fisiopatología , Ensamble y Desensamble de Cromatina/genética , Regulación Neoplásica de la Expresión Génica , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Línea Celular Tumoral , Proteínas Cromosómicas no Histona/metabolismo , Células HT29 , Humanos , Células MCF-7 , Mutación/genética , Nucleosomas/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica , Conformación Proteica , Factores de Transcripción/metabolismo
5.
Mol Cell ; 49(5): 838-9, 2013 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-23473602

RESUMEN

In this issue of Molecular Cell, Wu et al. (2013) report their extraordinary findings on the molecular mechanism that controls gene-specific targeting by Brd4, a universal epigenetic reader.

6.
Proc Natl Acad Sci U S A ; 115(16): E3692-E3701, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29610332

RESUMEN

Transcription factors (TFs) control gene expression by binding to genomic DNA in a sequence-specific manner. Mutations in TF binding sites are increasingly found to be associated with human disease, yet we currently lack robust methods to predict these sites. Here, we developed a versatile maximum likelihood framework named No Read Left Behind (NRLB) that infers a biophysical model of protein-DNA recognition across the full affinity range from a library of in vitro selected DNA binding sites. NRLB predicts human Max homodimer binding in near-perfect agreement with existing low-throughput measurements. It can capture the specificity of the p53 tetramer and distinguish multiple binding modes within a single sample. Additionally, we confirm that newly identified low-affinity enhancer binding sites are functional in vivo, and that their contribution to gene expression matches their predicted affinity. Our results establish a powerful paradigm for identifying protein binding sites and interpreting gene regulatory sequences in eukaryotic genomes.


Asunto(s)
Huella de ADN/métodos , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Animales , Sitios de Unión , Conjuntos de Datos como Asunto , Proteínas de Drosophila/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Elementos de Facilitación Genéticos , Biblioteca de Genes , Proteínas de Homeodominio/metabolismo , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Proteínas Recombinantes/metabolismo , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
7.
Trends Biochem Sci ; 41(12): 1022-1034, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27669647

RESUMEN

The p53 tumor suppressor is a transcription factor (TF) that exerts antitumor functions through its ability to regulate the expression of multiple genes. Within the p53 protein resides a relatively short unstructured C-terminal domain (CTD) that remarkably participates in virtually every aspect of p53 performance as a TF. Because these aspects are often interdependent and it is not always possible to dissect them experimentally, there has been a great deal of controversy about the CTD. In this review we evaluate the significance and key features of this interesting region of p53 and its impact on the many aspects of p53 function in light of previous and more recent findings.


Asunto(s)
ADN/química , Proteínas Intrínsecamente Desordenadas/química , Activación Transcripcional , Proteína p53 Supresora de Tumor/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , ADN/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios Proteicos , Estructura Terciaria de Proteína , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
8.
Proc Natl Acad Sci U S A ; 110(10): 3895-900, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23431171

RESUMEN

Monocytic leukemia zinc finger (MOZ)/KAT6A is a MOZ, Ybf2/Sas3, Sas2, Tip60 (MYST)-type histone acetyltransferase that functions as a coactivator for acute myeloid leukemia 1 protein (AML1)- and Ets family transcription factor PU.1-dependent transcription. We previously reported that MOZ directly interacts with p53 and is essential for p53-dependent selective regulation of p21 expression. We show here that MOZ is an acetyltransferase of p53 at K120 and K382 and colocalizes with p53 in promyelocytic leukemia (PML) nuclear bodies following cellular stress. The MOZ-PML-p53 interaction enhances MOZ-mediated acetylation of p53, and this ternary complex enhances p53-dependent p21 expression. Moreover, we identified an Akt/protein kinase B recognition sequence in the PML-binding domain of MOZ protein. Akt-mediated phosphorylation of MOZ at T369 has a negative effect on complex formation between PML and MOZ. As a result of PML-mediated suppression of Akt, the increased PML-MOZ interaction enhances p21 expression and induces p53-dependent premature senescence upon forced PML expression. Our research demonstrates that MOZ controls p53 acetylation and transcriptional activity via association with PML.


Asunto(s)
Histona Acetiltransferasas/metabolismo , Leucemia Promielocítica Aguda/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Acetilación , Animales , Secuencia de Bases , Células Cultivadas , Senescencia Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Técnicas de Inactivación de Genes , Histona Acetiltransferasas/antagonistas & inhibidores , Histona Acetiltransferasas/química , Histona Acetiltransferasas/deficiencia , Histona Acetiltransferasas/genética , Humanos , Cuerpos de Inclusión Intranucleares/metabolismo , Leucemia Promielocítica Aguda/genética , Ratones , Modelos Biológicos , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/genética , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteína p53 Supresora de Tumor/química , Factores de Transcripción p300-CBP/metabolismo
9.
Proc Natl Acad Sci U S A ; 108(26): 10385-90, 2011 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-21606339

RESUMEN

It is well established that p53 contacts DNA in a sequence-dependent manner in order to transactivate its myriad target genes. Yet little is known about how p53 interacts with its binding site/response element (RE) within such genes in vivo in the context of nucleosomal DNA. In this study we demonstrate that both distal (5') and proximal (3') p53 REs within the promoter of the p21 gene in unstressed HCT116 colon carcinoma cells are localized within a region of relatively high nucleosome occupancy. In the absence of cellular stress, p53 is prebound to both p21 REs within nucleosomal DNA in these cells. Treatment of cells with the DNA-damaging drug doxorubicin or the p53 stabilizing agent Nutlin-3, however, is accompanied by p53-dependent subsequent loss of nucleosomes associated with such p53 REs. We show that in vitro p53 can bind to mononucleosomal DNA containing the distal p21 RE, provided the binding site is not close to the diad center of the nucleosome. In line with this, our data indicate that the p53 distal RE within the p21 gene is located close to the end of the nucleosome. Thus, low- and high-resolution mapping of nucleosome boundaries around p53 REs within the p21 promoter have provided insight into the mechanism of p53 binding to its sites in cells and the consequent changes in nucleosome occupancy at such sites.


Asunto(s)
Nucleosomas/metabolismo , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas p21(ras)/genética , Activación Transcripcional , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular Tumoral , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , ADN/metabolismo , Humanos , Unión Proteica
10.
J Biol Chem ; 287(4): 2509-19, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22110125

RESUMEN

p53 is a tumor suppressor protein that acts as a transcription factor to regulate (either positively or negatively) a plethora of downstream target genes. Although its ability to induce protein coding genes is well documented, recent studies have implicated p53 in the regulation of non-coding RNAs, including both microRNAs (e.g. miR-34a) and long non-coding RNAs (e.g. lincRNA-p21). We have identified the non-protein coding locus PVT1 as a p53-inducible target gene. PVT1, a very large (>300 kb) locus located downstream of c-myc on chromosome 8q24, produces a wide variety of spliced non-coding RNAs as well as a cluster of six annotated microRNAs: miR-1204, miR-1205, miR-1206, miR-1207-5p, miR-1207-3p, and miR-1208. Chromatin immunoprecipitation (ChIP), electrophoretic mobility shift assay (EMSA), and luciferase assays reveal that p53 binds and activates a canonical response element within the vicinity of miR-1204. Consistently, we demonstrate the p53-dependent induction of endogenous PVT1 transcripts and consequent up-regulation of mature miR-1204. Finally, we have shown that ectopic expression of miR-1204 leads to increased p53 levels and causes cell death in a partially p53-dependent manner.


Asunto(s)
Cromosomas Humanos Par 8/metabolismo , MicroARNs/biosíntesis , Proteínas/metabolismo , Elementos de Respuesta/fisiología , Transcripción Genética/fisiología , Proteína p53 Supresora de Tumor/metabolismo , Muerte Celular/fisiología , Línea Celular Tumoral , Cromosomas Humanos Par 8/genética , Sitios Genéticos/fisiología , Humanos , MicroARNs/genética , Proteínas/genética , Procesamiento Postranscripcional del ARN/fisiología , ARN Largo no Codificante , Proteína p53 Supresora de Tumor/genética
11.
Bioinformatics ; 27(17): 2361-7, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21752801

RESUMEN

MOTIVATION: Motif discovery is now routinely used in high-throughput studies including large-scale sequencing and proteomics. These datasets present new challenges. The first is speed. Many motif discovery methods do not scale well to large datasets. Another issue is identifying discriminative rather than generative motifs. Such discriminative motifs are important for identifying co-factors and for explaining changes in behavior between different conditions. RESULTS: To address these issues we developed a method for DECOnvolved Discriminative motif discovery (DECOD). DECOD uses a k-mer count table and so its running time is independent of the size of the input set. By deconvolving the k-mers DECOD considers context information without using the sequences directly. DECOD outperforms previous methods both in speed and in accuracy when using simulated and real biological benchmark data. We performed new binding experiments for p53 mutants and used DECOD to identify p53 co-factors, suggesting new mechanisms for p53 activation. AVAILABILITY: The source code and binaries for DECOD are available at http://www.sb.cs.cmu.edu/DECOD CONTACT: zivbj@cs.cmu.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
ADN/química , Motivos de Nucleótidos , Análisis de Secuencia de ADN , Algoritmos , Secuencia de Bases , Proteína p53 Supresora de Tumor/metabolismo
12.
Mol Cancer Res ; 19(9): 1522-1533, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34045312

RESUMEN

p53 mutations that result in loss of transcriptional activity are commonly found in numerous types of cancer. While the majority of these are missense mutations that map within the central DNA-binding domain, truncations and/or frameshift mutations can also occur due to various nucleotide substitutions, insertions, or deletions. These changes result in mRNAs containing premature stop codons that are translated into a diverse group of C-terminally truncated proteins. Here we characterized three p53 frameshift mutant proteins expressed from the endogenous TP53 locus in U2OS osteosarcoma and HCT116 colorectal cancer cell lines. These mutants retain intact DNA-binding domains but display altered oligomerization properties. Despite their abnormally high expression levels, they are mostly transcriptionally inactive and unable to initiate a stimuli-induced transcriptional program characteristic of wild-type p53. However, one of these variant p53 proteins, I332fs*14, which resembles naturally expressed TAp53 isoforms ß and γ, retains some residual antiproliferative activity and can induce cellular senescence in HCT116 cells. Cells expressing this mutant also display decreased motility in migration assays. Hence, this p53 variant exhibits a combination of loss-of-gain and gain-of-function characteristics, distinguishing it from both wild type p53 and p53 loss. IMPLICATIONS: p53 frameshift mutants display a mixture of residual antiproliferative and neomorphic functions that may be differentially exploited for targeted therapy.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Colorrectales/patología , Mutación del Sistema de Lectura , Regulación Neoplásica de la Expresión Génica , Mutación con Pérdida de Función , Osteosarcoma/patología , Proteína p53 Supresora de Tumor/genética , Apoptosis , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Ciclo Celular , Movimiento Celular , Proliferación Celular , Neoplasias Colorrectales/genética , Humanos , Osteosarcoma/genética , Células Tumorales Cultivadas
13.
Cell Rep ; 19(11): 2383-2395, 2017 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-28614722

RESUMEN

Although DNA modifications play an important role in gene regulation, the underlying mechanisms remain elusive. We developed EpiSELEX-seq to probe the sensitivity of transcription factor binding to DNA modification in vitro using massively parallel sequencing. Feature-based modeling quantifies the effect of cytosine methylation (5mC) on binding free energy in a position-specific manner. Application to the human bZIP proteins ATF4 and C/EBPß and three different Pbx-Hox complexes shows that 5mCpG can both increase and decrease affinity, depending on where the modification occurs within the protein-DNA interface. The TF paralogs tested vary in their methylation sensitivity, for which we provide a structural rationale. We show that 5mCpG can also enhance in vitro p53 binding and provide evidence for increased in vivo p53 occupancy at methylated binding sites, correlating with primed enhancer histone marks. Our results establish a powerful strategy for dissecting the epigenomic modulation of protein-DNA interactions and their role in gene regulation.


Asunto(s)
Metilación de ADN/genética , Epigénesis Genética/genética , Epigenómica/métodos , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica , Humanos , Unión Proteica
14.
Cell Cycle ; 15(11): 1425-38, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27210019

RESUMEN

Functional in a tetrameric state, the protein product of the p53 tumor suppressor gene confers its tumor-suppressive activity by transactivating genes which promote cell-cycle arrest, senescence, or programmed cell death. How p53 distinguishes between these divergent outcomes is still a matter of considerable interest. Here we discuss the impact of 2 mutations in the tetramerization domain that confer unique properties onto p53. By changing lysines 351 and 357 to arginine, thereby blocking all post-translational modifications of these residues, DNA binding and transcriptional regulation by p53 remain virtually unchanged. On the other hand, by changing these lysines to glutamine (2KQ-p53), thereby neutralizing their positive charge and potentially mimicking acetylation, p53 is impaired in the induction of cell cycle arrest and yet can still effectively induce cell death. Surprisingly, when 2KQ-p53 is expressed at high levels in H1299 cells, it can bind to and transactivate numerous p53 target genes including p21, but not others such as miR-34a and cyclin G1 to the same extent as wild-type p53. Our findings show that strong induction of p21 is not sufficient to block H1299 cells in G1, and imply that modification of one or both of the lysines within the tetramerization domain may serve as a mechanism to shunt p53 from inducing cell cycle arrest.


Asunto(s)
Células Epiteliales/metabolismo , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Lisina/química , Procesamiento Proteico-Postraduccional , Proteína p53 Supresora de Tumor/química , Sustitución de Aminoácidos , Apoptosis , Arginina/química , Arginina/metabolismo , Línea Celular Tumoral , Senescencia Celular , Ciclina G1/genética , Ciclina G1/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Células Epiteliales/patología , Glutamina/química , Glutamina/metabolismo , Humanos , Lisina/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Modelos Moleculares , Mutación , Dominios Proteicos , Multimerización de Proteína , Estructura Secundaria de Proteína , Transducción de Señal , Relación Estructura-Actividad , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
15.
Nat Struct Mol Biol ; 17(8): 982-9, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20639885

RESUMEN

The p53 tumor suppressor interacts with its negative regulator Mdm2 via the former's N-terminal region and core domain, yet the extreme p53 C-terminal region contains lysine residues ubiquitinated by Mdm2 and can bear post-translational modifications that inhibit Mdm2-p53 association. We show that the Mdm2-p53 interaction is decreased upon deletion, mutation or acetylation of the p53 C terminus. Mdm2 decreases the association of full-length but not C-terminally deleted p53 with a DNA target sequence in vitro and in cells. Further, using multiple approaches, we show that a peptide from the p53 C terminus directly binds the Mdm2 N terminus in vitro. We also show that p300-acetylated p53 inefficiently binds Mdm2 in vitro, and Nutlin-3 treatment induces C-terminal modification(s) of p53 in cells, explaining the low efficiency of Nutlin-3 in dissociating p53-MDM2 in vitro.


Asunto(s)
Proteínas Proto-Oncogénicas c-mdm2/química , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/metabolismo , Animales , Reactivos de Enlaces Cruzados/farmacología , ADN/metabolismo , Células HCT116 , Humanos , Imidazoles/metabolismo , Espectrometría de Masas , Ratones , Modelos Biológicos , Piperazinas/metabolismo , Unión Proteica/efectos de los fármacos , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , ARN Interferente Pequeño/metabolismo , Eliminación de Secuencia/genética , Relación Estructura-Actividad , Proteína p14ARF Supresora de Tumor/metabolismo
18.
Mol Microbiol ; 64(3): 630-46, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17462013

RESUMEN

The strains of Thermus thermophilus that contain the nitrate respiration conjugative element (NCE) replace their aerobic respiratory chain by an anaerobic counterpart made of the Nrc-NADH dehydrogenase and the Nar-nitrate reductase in response to nitrate and oxygen depletion. This replacement depends on DnrS and DnrT, two homologues to sensory transcription factors encoded in a bicistronic operon by the NCE. DnrS is an oxygen-sensitive protein required in vivo to activate transcription on its own dnr promoter and on that of the nar operon, but not required for the expression of the nrc operon. In contrast, DnrT is required for the transcription of these three operons and also for the repression of nqo, the operon that encodes the major respiratory NADH dehydrogenase expressed during aerobic growth. Thermophilic in vitro assays revealed that low DnrT concentrations allows the recruitment of the T. thermophilus RNA polymerase sigma(A) holoenzyme to the nrc promoter and its transcription, whereas higher DnrT concentrations are required to repress transcription on the nqo promoter. In conclusion, our data show a complex autoinducible mechanism by which DnrT functions as the transcriptional switch that allows the NCE to take the control of the respiratory metabolism of its host during adaptation to anaerobic growth.


Asunto(s)
Proteínas Bacterianas/metabolismo , Nitratos/metabolismo , Consumo de Oxígeno/fisiología , Thermus thermophilus/metabolismo , Secuencias de Aminoácidos , Anaerobiosis , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Regulación Bacteriana de la Expresión Génica , Datos de Secuencia Molecular , NADH Deshidrogenasa/metabolismo , Nitrato-Reductasa/metabolismo , Operón/genética , Oxígeno/farmacología , Consumo de Oxígeno/genética , Regiones Promotoras Genéticas/genética , Thermus thermophilus/genética , Thermus thermophilus/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
19.
EMBO J ; 25(10): 2131-41, 2006 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-16628221

RESUMEN

Gfh1, a transcription factor from Thermus thermophilus, inhibits all catalytic activities of RNA polymerase (RNAP). We characterized the Gfh1 structure, function and possible mechanism of action and regulation. Gfh1 inhibits RNAP by competing with NTPs for coordinating the active site Mg2+ ion. This coordination requires at least two aspartates at the tip of the Gfh1 N-terminal coiled-coil domain (NTD). The overall structure of Gfh1 is similar to that of the Escherichia coli transcript cleavage factor GreA, except for the flipped orientation of the C-terminal domain (CTD). We show that depending on pH, Gfh1-CTD exists in two alternative orientations. At pH above 7, it assumes an inactive 'flipped' orientation seen in the structure, which prevents Gfh1 from binding to RNAP. At lower pH, Gfh1-CTD switches to an active 'Gre-like' orientation, which enables Gfh1 to bind to and inhibit RNAP.


Asunto(s)
Proteínas Bacterianas/metabolismo , Conformación Proteica , Thermus thermophilus/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Transcripción Genética , Proteínas Bacterianas/genética , Sitios de Unión , Cristalografía por Rayos X , ARN Polimerasas Dirigidas por ADN/antagonistas & inhibidores , ARN Polimerasas Dirigidas por ADN/metabolismo , Concentración de Iones de Hidrógeno , Magnesio/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Factores de Transcripción/genética
20.
Mol Microbiol ; 55(5): 1315-24, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15720542

RESUMEN

Like transcription initiation, the elongation and termination stages of transcription cycle serve as important targets for regulatory factors in prokaryotic cells. In this review, we discuss the recent progress in structural and biochemical studies of three evolutionarily conserved elongation factors, GreA, NusA and Mfd. These factors affect RNA polymerase (RNAP) processivity by modulating transcription pausing, arrest, termination or anti-termination. With structural information now available for RNAP and models of ternary elongation complexes, the interaction between these factors and RNAP can be modelled, and possible molecular mechanisms of their action can be inferred. The models suggest that these factors interact with RNAP at or near its three major, nucleic acid-binding channels: Mfd near the upstream opening of the primary (DNA-binding) channel, NusA in the vicinity of both the primary channel and the RNA exit channel, and GreA within the secondary (backtracked RNA-binding) channel, and support the view that these channels are involved in the maintenance of RNAP processivity.


Asunto(s)
Proteínas Bacterianas/metabolismo , Transcripción Genética , Factores de Elongación Transcripcional/metabolismo , Sitios de Unión , Escherichia coli/enzimología , Escherichia coli/genética , Factores de Elongación Transcripcional/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA