Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Adv Res ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38341032

RESUMEN

INTRODUCTION: One of the hallmarks of Parkinsons Disease (PD) is oxidative distress, leading to mitochondrial dysfunction and neurodegeneration. Insulin-like growth factor II (IGF-II) has been proven to have antioxidant and neuroprotective effects in some neurodegenerative diseases, including PD. Consequently, there isgrowing interest in understanding the different mechanisms involved in the neuroprotective effect of this hormone. OBJECTIVES: To clarify the mechanism of action of IGF-II involved in the protective effect of this hormone. METHODS: The present study was carried out on a cellular model PD based on the incubation of dopaminergic cells (SN4741) in a culture with the toxic 1-methyl-4-phenylpyridinium (MPP+), in the presence of IGF-II. This model undertakes proteomic analyses in order to understand which molecular cell pathways might be involved in the neuroprotective effect of IGF-II. The most important proteins found in the proteomic study were tested by Western blot, colorimetric enzymatic activity assay and immunocytochemistry. Along with the proteomic study, mitochondrial morphology and function were also studied by transmission electron microscopy and oxygen consumption rate. The cell cycle was also analysed using 7AAd/BrdU staining, and flow cytometry. RESULTS: The results obtained indicate that MPP+, MPP++IGF-II treatment and IGF-II, when compared to control, modified the expression of 197, 246 proteins and 207 respectively. Some of these proteins were found to be involved in mitochondrial structure and function, and cell cycle regulation. Including IGF-II in the incubation medium prevents the cell damage induced by MPP+, recovering mitochondrial function and cell cycle dysregulation, and thereby decreasing apoptosis. CONCLUSION: IGF-II improves mitochondrial dynamics by promoting the association of Mitofilin with mitochondria, regaining function and redox homeostasis. It also rebalances the cell cycle, reducing the amount of apoptosis and cell death by the regulation of transcription factors, such as Checkpoint kinase 1.

2.
Clin Nutr ; 42(8): 1389-1398, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37421852

RESUMEN

BACKGROUND: Oleocanthal and oleacein are olive oil phenolic compounds with well known anti-inflammatory and anti-oxidant properties. The main evidence, however, is provided by experimental studies. Few human studies have examined the health benefits of olive oils rich in these biophenols. Our aim was to assess the health properties of rich oleocanthal and oleacein extra virgin olive oil (EVOO), compared to those of common olive oil (OO), in people with prediabetes and obesity. METHODS: Randomised, double-blind, crossover trial done in people aged 40-65 years with obesity (BMI 30-40 kg/m2) and prediabetes (HbA1c 5.7-6.4%). The intervention consisted in substituting for 1 month the oil used for food, both raw and cooked, by EVOO or OO. No changes in diet or physical activity were recommended. The primary outcome was the inflammatory status. Secondary outcomes were the oxidative status, body weight, glucose handling and lipid profile. An ANCOVA model adjusted for age, sex and treatment administration sequence was used for the statistical analysis. RESULTS: A total of 91 patients were enrolled (33 men and 58 women) and finished the trial. A decrease in interferon-γ was observed after EVOO treatment, reaching inter-treatment differences (P = 0.041). Total antioxidant status increased and lipid and organic peroxides decreased after EVOO treatment, the changes reaching significance compared to OO treatment (P < 0.05). Decreases in weight, BMI and blood glucose (p < 0.05) were found after treatment with EVOO and not with OO. CONCLUSIONS: Treatment with EVOO rich in oleocanthal and oleacein differentially improved oxidative and inflammatory status in people with obesity and prediabetes.


Asunto(s)
Antioxidantes , Estado Prediabético , Masculino , Humanos , Femenino , Aceite de Oliva , Estudios Cruzados , Obesidad
3.
Brain Sci ; 11(8)2021 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-34439724

RESUMEN

Stress seems to contribute to the neuropathology of Parkinson's disease (PD), possibly by dysregulation of the hypothalamic-pituitary-adrenal axis. Oxidative distress and mitochondrial dysfunction are key factors involved in the pathophysiology of PD and neuronal glucocorticoid-induced toxicity. Animal PD models have been generated to study the effects of hormonal stress, but no in vitro model has yet been developed. Our aim was to examine the impact of corticosterone (CORT) administration on a dopaminergic neuronal cell model of PD induced by the neurotoxin MPP+, as a new combined PD model based on the marker of endocrine response to stress, CORT, and oxidative-mitochondrial damage. We determined the impact of CORT, MPP+ and their co-incubation on reactive oxygen species production (O2-•), oxidative stress cellular markers (advanced-oxidation protein products and total antioxidant status), mitochondrial function (mitochondrial membrane potential and mitochondrial oxygen consumption rate) and neurodegeneration (Fluoro-Jade staining). Accordingly, the administration of MPP+ or CORT individually led to cell damage compared to controls (p < 0.05), as determined by several methods, whereas their co-incubation produced strong cell damage (p < 0.05). The combined model described here could be appropriate for investigating neuropathological hallmarks and for evaluating potential new therapeutic tools for PD patients suffering mild to moderate emotional stress.

4.
J Clin Med ; 10(14)2021 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-34300333

RESUMEN

INTRODUCTION: The goal of this study is to determine whether Advanced glycosylated end-products (AGE), Advanced oxidation protein products (AOPP) and Matrix metalloproteinase 7 (MMP7) could be used as differential biomarkers for idiopathic pulmonary fibrosis (IPF) and connective tissue disease-associated interstitial lung disease (CTD-ILD). METHOD: Seventy-three patients were enrolled: 29 with IPF, 14 with CTD-ILD, and 30 healthy controls. The study included a single visit by participants. A blood sample was drawn and serum was analysed for AGE using spectrofluorimetry, AOPP by spectrophotometry, and MMP7 using sandwich-type enzyme-linked immunosorbent assay. RESULTS: AGE, AOPP and MMP7 serum levels were significantly higher in both IPF and CTD-ILD patients versus healthy controls; and AGE was also significantly elevated in CTD-ILD compared to the IPF group. AGE plasma levels clearly distinguished CTD-ILD patients from healthy participants (AUC = 0.95; 95% IC 0.86-1), whereas in IPF patients, the distinction was moderate (AUC = 0.78; 95% IC 0.60-0.97). CONCLUSION: In summary, our results provide support for the potential value of serum AGE, AOPP and MMP7 concentrations as diagnostic biomarkers in IPF and CTD-ILD to differentiate between ILD patients and healthy controls. Furthermore, this study provides evidence, for the first time, for the possible use of AGE as a differential diagnostic biomarker to distinguish between IPF and CTD-ILD. The value of these biomarkers as additional tools in a multidisciplinary approach to IPF and CTD-ILD diagnosis needs to be considered and further explored. Multicentre studies are necessary to understand the role of AGE in differential diagnosis.

5.
Redox Biol ; 46: 102095, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34418603

RESUMEN

Oxidative distress and mitochondrial dysfunction, are key factors involved in the pathophysiology of Parkinson's disease (PD). The pleiotropic hormone insulin-like growth factor II (IGF-II) has shown neuroprotective and antioxidant effects in some neurodegenerative diseases. In this work, we demonstrate the protective effect of IGF-II against the damage induced by 1-methyl-4-phenylpyridinium (MPP+) in neuronal dopaminergic cell cultures and a mouse model of progressive PD. In the neuronal model, IGF-II counteracts the oxidative distress produced by MPP + protecting dopaminergic neurons. Improved mitochondrial function, increased nuclear factor (erythroid-derived 2)-like2 (NRF2) nuclear translocation along with NRF2-dependent upregulation of antioxidative enzymes, and modulation of mammalian target of rapamycin (mTOR) signalling pathway were identified as mechanisms leading to neuroprotection and the survival of dopaminergic cells. The neuroprotective effect of IGF-II against MPP + -neurotoxicity on dopaminergic neurons depends on the specific IGF-II receptor (IGF-IIr). In the mouse model, IGF-II prevents behavioural dysfunction and dopaminergic nigrostriatal pathway degeneration and mitigates neuroinflammation induced by MPP+. Our work demonstrates that hampering oxidative stress and normalising mitochondrial function through the interaction of IGF-II with its specific IGF-IIr are neuroprotective in both neuronal and mouse models. Thus, the modulation of the IGF-II/IGF-IIr signalling pathway may be a useful therapeutic approach for the prevention and treatment of PD.


Asunto(s)
Enfermedad de Parkinson , 1-Metil-4-fenilpiridinio/toxicidad , Animales , Neuronas Dopaminérgicas , Factor II del Crecimiento Similar a la Insulina , Ratones , Estrés Oxidativo , Enfermedad de Parkinson/tratamiento farmacológico
6.
Biomedicines ; 9(9)2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34572393

RESUMEN

Lysophosphatidic acid (LPA) is an endogenous lysophospholipid and a bioactive lipid that is synthesized by the enzyme autotaxin (ATX). The ATX-LPA axis has been associated with cognitive dysfunction and inflammatory diseases, mainly in a range of nonalcoholic liver diseases. Recently, preclinical and clinical evidence has suggested a role of LPA signaling in alcohol use disorder (AUD) and AUD-related cognitive function. However, the ATX-LPA axis has not been sufficiently investigated in alcoholic liver diseases. An exploratory study was conducted in 136 participants, 66 abstinent patients with AUD seeking treatment for alcohol (alcohol group), and 70 healthy control subjects (control group). The alcohol group was divided according to the presence of comorbid liver diseases (i.e., fatty liver/steatosis, alcoholic steatohepatitis, or cirrhosis). All participants were clinically evaluated, and plasma concentrations of total LPA and ATX were measured using enzyme-linked immunosorbent assays. Data were primarily analyzed using analysis of covariance (ANCOVA) while controlling for age, body mass index, and sex. Logistic regression models were created to assess the association of the ATX-LPA axis and AUD or liver disease. LPA and ATX were log10-transformed to fit the assumptions of parametric testing.The main results were as follows: total LPA and ATX concentrations were dysregulated in the alcohol group, and patients with AUD had significantly lower LPA (F(1,131) = 10.677, p = 0.001) and higher ATX (F(1,131) = 8.327, p = 0.005) concentrations than control subjects; patients with AUD and liver disease had significantly higher ATX concentrations (post hoc test, p < 0.05) than patients with AUD but not liver disease; significant correlations between AUD-related variables and concentrations of LPA and ATX were only found in the non-liver disease subgroup (the duration of alcohol abstinence with LPA and ATX (r = +0.33, p < 0.05); and the severity of AUD with ATX (rho = -0.33, p < 0.05)); and a logistic regression model with LPA, ATX, and AUD-related variables showed an excellent discriminative power (area under the curve (AUC) = 0.915, p < 0.001) for distinguishing patients with AUD and comorbid liver disease. In conclusion, our data show that the ATX-LPA axis is dysregulated in AUD and suggest this lipid signaling, in combination with relevant AUD-related variables, as a reliable biomarker of alcoholic liver diseases.

7.
Cells ; 10(1)2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33383658

RESUMEN

Imbalance in the oxidative status in neurons, along with mitochondrial damage, are common characteristics in some neurodegenerative diseases. The maintenance in energy production is crucial to face and recover from oxidative damage, and the preservation of different sources of energy production is essential to preserve neuronal function. Fingolimod phosphate is a drug with neuroprotective and antioxidant actions, used in the treatment of multiple sclerosis. This work was performed in a model of oxidative damage on neuronal cell cultures exposed to menadione in the presence or absence of fingolimod phosphate. We studied the mitochondrial function, antioxidant enzymes, protein nitrosylation, and several pathways related with glucose metabolism and glycolytic and pentose phosphate in neuronal cells cultures. Our results showed that menadione produces a decrease in mitochondrial function, an imbalance in antioxidant enzymes, and an increase in nitrosylated proteins with a decrease in glycolysis and glucose-6-phosphate dehydrogenase. All these effects were counteracted when fingolimod phosphate was present in the incubation media. These effects were mediated, at least in part, by the interaction of this drug with its specific S1P receptors. These actions would make this drug a potential tool in the treatment of neurodegenerative processes, either to slow progression or alleviate symptoms.


Asunto(s)
Antioxidantes/farmacología , Clorhidrato de Fingolimod/farmacología , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores/farmacología , Vitamina K 3/efectos adversos , Animales , Línea Celular , Glucólisis/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/tratamiento farmacológico , Neuronas/efectos de los fármacos , Neuronas/patología , Neuroprotección , Estrés Oxidativo/efectos de los fármacos , Receptores de Esfingosina-1-Fosfato/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-32210914

RESUMEN

Background and Aims: The synthetic atypical cannabinoid Abn-CBD, a cannabidiol (CBD) derivative, has been recently shown to modulate the immune system in different organs, but its impact in obesity-related meta-inflammation remains unstudied. We investigated the effects of Abn-CBD on metabolic and inflammatory parameters utilizing a diet-induced obese (DIO) mouse model of prediabetes and non-alcoholic fatty liver disease (NAFLD). Materials and Methods: Ten-week-old C57Bl/6J mice were fed a high-fat diet for 15 weeks, following a 2-week treatment of daily intraperitoneal injections with Abn-CBD or vehicle. At week 15 mice were obese, prediabetic and developed NAFLD. Body weight and glucose homeostasis were monitored. Mice were euthanized and blood, liver, adipose tissue and pancreas were collected and processed for metabolic and inflammatory analysis. Results: Body weight and triglycerides profiles in blood and liver were comparable between vehicle- and Abn-CBD-treated DIO mice. However, treatment with Abn-CBD reduced hyperinsulinemia and markers of systemic low-grade inflammation in plasma and fat, also promoting white adipose tissue browning. Pancreatic islets from Abn-CBD-treated mice showed lower apoptosis, inflammation and oxidative stress than vehicle-treated DIO mice, and beta cell proliferation was induced. Furthermore, Abn-CBD lowered hepatic fibrosis, inflammation and macrophage infiltration in the liver when compared to vehicle-treated DIO mice. Importantly, the balance between hepatocyte proliferation and apoptosis was improved in Abn-CBD-treated compared to vehicle-treated DIO mice. Conclusions: These results suggest that Abn-CBD exerts beneficial immunomodulatory actions in the liver, pancreas and adipose tissue of DIO prediabetic mice with NAFLD, thus protecting tissues. Therefore, Abn-CBD and related compounds could represent novel pharmacological strategies for managing obesity-related metabolic disorders.


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Inflamación/prevención & control , Hígado/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/patología , Páncreas/efectos de los fármacos , Estado Prediabético/patología , Resorcinoles/farmacología , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Animales , Citoprotección/efectos de los fármacos , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Inflamación/etiología , Inflamación/patología , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Páncreas/metabolismo , Páncreas/patología , Estado Prediabético/tratamiento farmacológico , Estado Prediabético/etiología , Estado Prediabético/metabolismo , Resorcinoles/uso terapéutico
10.
J Gen Physiol ; 81(3): 355-72, 1983 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-6132958

RESUMEN

The post-tetanic decay in miniature excitatory junction potential (MEJP) frequency and in facilitation of excitatory junction potentials (EJPs) was measured at crayfish neuromuscular junctions. A 2-s tetanus at 20 Hz caused the MEJP frequency to increase an average of 40 times and the EJP amplitude to increase an average of 13 times. Both MEJP frequency and EJP facilitation decayed with two time constants. The fast component of MEJP frequency decay was 47 ms, and that of EJP facilitation was 130 ms. The slow component of MEJP frequency decay was 0.57 s, and that of EJP facilitation was approximately 1 s. These results were consistent with the predictions of a residual calcium model, with a nonlinear relationship between presynaptic calcium concentration and transmitter release.


Asunto(s)
Calcio/fisiología , Modelos Biológicos , Unión Neuromuscular/fisiología , Neurotransmisores/metabolismo , Sinapsis/fisiología , Animales , Astacoidea , Unión Neuromuscular/metabolismo
11.
J Clin Eng ; 22(4): 239-48, 1997.
Artículo en Inglés | MEDLINE | ID: mdl-10169900

RESUMEN

Since 1976, Clinical Engineering (CE) has been studied at the Simón Bolívar University (USB) as part of the Bioengineering Studies program developed at that University. However, it was not until 1996 that Clinical Engineering activities were established in a Venezuelan hospital. This paper describes how the USB, using its own human resources, has achieved the establishment of a Clinical Engineering Department in a national reference hospital for the first time.


Asunto(s)
Ingeniería Biomédica/organización & administración , Reestructuración Hospitalaria/métodos , Hospitales Pediátricos/organización & administración , Servicio de Mantenimiento e Ingeniería en Hospital/organización & administración , Eficiencia Organizacional , Hospitales con 300 a 499 Camas , Capacitación en Servicio , Modelos Organizacionales , Objetivos Organizacionales , Proyectos Piloto , Técnicas de Planificación , Venezuela
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA