Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Nat Prod ; 86(2): 317-329, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36749898

RESUMEN

A set of new dihydroquinoline embelin derivatives was obtained from the reaction of the natural benzoquinone embelin (1) with anilines and aromatic aldehydes in the presence of AgOTf. The synthesis of these compounds involves the formation of a Knoevenagel adduct, followed by nucleophilic addition of aniline and subsequent electrocyclic ring closure. The scope of the reaction regarding the aldehydes and anilines was determined. Quinoline derivatives were also obtained from the corresponding dihydroquinolines under oxidation with DDQ. The cardioprotective activity of the synthesized compounds was screened using a doxorubicin-induced cardiotoxicity model in H9c2 cardiomyocytes. Some structure-activity relationships were outlined, and the best activities were achieved with quinoline-embelin derivatives having a 4-nitrophenyl group attached at the pyridine ring. The obtained results indicated that embelin derivatives 4i, 6a, 6d, 6k, and 6m could have potential as cardioprotective agents, as they attenuated a DOX-induced cardiotoxicity effect acting on oxidative stress and apoptosis.


Asunto(s)
Cardiotónicos , Quinolinas , Humanos , Cardiotónicos/farmacología , Cardiotoxicidad/metabolismo , Doxorrubicina/farmacología , Benzoquinonas/farmacología , Estrés Oxidativo , Miocitos Cardíacos , Apoptosis , Quinolinas/farmacología , Compuestos de Anilina/farmacología , Aldehídos/metabolismo
2.
Bioorg Chem ; 132: 106362, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36657273

RESUMEN

Dysregulated inflammasome activity, particularly of the NLRP3 inflammasome, is associated with the development of several inflammatory diseases. The study of molecules directly targeting NLRP3 is an emerging field in the discovery of new therapeutic compounds for the treatment of inflammatory disorders. Friedelane triterpenes are biologically active phytochemicals having a wide range of activities including anti-inflammatory effects. In this work, we evaluated the potential anti-inflammatory activity of phenolic and quinonemethide nor-triterpenes (1-11) isolated from Maytenus retusa and some semisynthetic derivatives (12-16) through inhibition of the NLRP3 inflammasome in macrophages. Among them, we found that triterpenes 6 and 14 were the most potent, showing markedly reduced caspase-1 activity, IL-1ß secretion (IC50 = 1.15 µM and 0.19 µM, respectively), and pyroptosis (IC50 = 2.21 µM and 0.13 µM, respectively). Further characterization confirmed their selective inhibition of NLRP3 inflammasome in both canonical and non-canonical activation pathways with no effects on AIM2 or NLRC4 inflammasome activation.


Asunto(s)
Inflamasomas , Triterpenos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Fenoles , Triterpenos/farmacología , Antiinflamatorios/farmacología
3.
Drug Dev Res ; 84(1): 84-95, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36401841

RESUMEN

The cardiovascular side effects associated with doxorubicin (DOX), a wide spectrum anticancer drug, have limited its clinical application. Therefore, to explore novel strategies with cardioprotective effects, a series of new labdane conjugates were prepared (6a-6c and 8a-8d) from the natural diterpene labdanodiol (1). These hybrid compounds contain anti-inflammatory privileged structures such as naphthalimide, naphthoquinone, and furanonaphthoquinone. Biological activity of these conjugates against DOX-induced cardiotoxicity was tested in vitro and the potential molecular mechanisms of protective effects were explored in H9c2 cardiomyocytes. Three compounds 6c, 8a, and 8b significantly improved cardiomyocyte survival, via inhibition of reactive oxygen species-mediated mitogen-activated protein kinase signaling pathways (extracellular signal-regulated kinase and c-Jun N-terminal kinase) and autophagy mediated by Akt activation. Some structure-activity relationships were outlined, and the best activity was achieved with the labdane-furonaphthoquinone conjugate 8a having an N-cyclohexyl substituent. The findings of this study pave the way for further investigations to obtain more compounds with potential cardioprotective activity.


Asunto(s)
Diterpenos , Miocitos Cardíacos , Humanos , Cardiotoxicidad/etiología , Cardiotoxicidad/prevención & control , Cardiotoxicidad/metabolismo , Transducción de Señal , Apoptosis , Doxorrubicina/efectos adversos , Diterpenos/farmacología , Estrés Oxidativo
4.
J Nat Prod ; 83(7): 2155-2164, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32584575

RESUMEN

The NLRP3 inflammasome plays a critical role in inflammation-mediated human diseases and represents a promising drug target for novel anti-inflammatory therapies. Hispanolone is a labdane diterpenoid isolated from the aerial parts of Ballota species. This diterpenoid and some derivatives have demonstrated anti-inflammatory effects in classical inflammatory pathways. In the present study, a series of dehydrohispanolone derivatives (1-19) was synthesized, and their anti-inflammatory activities toward NLRP3 inflammasome activation were evaluated. The structures of the dehydrohispanolone analogues produced were elucidated by NMR spectroscopy and mass spectrometry. Four derivatives significantly inhibited IL-1ß secretion, with 15 and 18 being the most active (IC50 = 18.7 and 13.8 µM, respectively). Analysis of IL-1ß and caspase-1 expression revealed that the new diterpenoids 15 and 18 are selective inhibitors of the NLRP3 inflammasome, reinforcing the previously demonstrated anti-inflammatory properties of hispanolone derivatives.


Asunto(s)
Diterpenos/química , Diterpenos/farmacología , Inflamasomas/efectos de los fármacos , Inflamación/prevención & control , Animales , Humanos , Estructura Molecular , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Relación Estructura-Actividad
5.
Planta Med ; 85(17): 1304-1315, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31234214

RESUMEN

Natural products and their derivatives represent the most consistently successful source of drug leads. Terpenoids, a structurally diverse group, are secondary metabolites widely distributed in nature, endowed with a wide range of biological activities such as antibacterial, anti-inflammatory, antitumoral, or neuroprotective effects, which consolidate their therapeutic value. During the last decades, and taking into consideration the prevalence of aging-related diseases, research activity into the neuroprotective effects of these types of compounds has increased enormously. Several signaling pathways involved in neuroprotection are targets of their mechanism of action and mediate their pleiotropic protective activity in neuronal cell damage. In the present review, molecular basis of the neuroprotection exerted by terpenoids is presented, focusing on preclinical evidence of the therapeutic potential of diterpenoids and triterpenoids on neurodegenerative disorders. By acting on diverse mechanisms simultaneously, terpenoids have been emphasized as promising multitarget agents.


Asunto(s)
Fármacos Neuroprotectores/farmacología , Terpenos/farmacología , Animales , Sistemas de Liberación de Medicamentos , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico
6.
Int J Obes (Lond) ; 42(5): 1062-1072, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29453462

RESUMEN

BACKGROUND: Obesity and insulin resistance/diabetes are important risk factors for cardiovascular diseases and demand safe and efficacious therapeutics. OBJECTIVE: To assess the effects of a new thiazolidine compound-GQ-11-on obesity and insulin resistance induced by a diabetogenic diet in LDL receptor-deficient (LDLr-/-) mice. METHODS: Molecular docking simulations of GQ-11, PPARα and PPARγ structures were performed. Male C57BL/6J LDLr-/- mice fed a diabetogenic diet for 24 weeks were treated with vehicle, GQ-11 or pioglitazone or (20 mg/kg/day) for 28 days by oral gavage. Glucose tolerance test, insulin, HOMA-IR, adipokines (leptin, adiponectin) and the lipid profile were assessed after treatment. Adipose tissue was analysed by X-ray analysis and morphometry; gene and protein expression were evaluated by real-time PCR and western blot, respectively. RESULTS: GQ-11 showed partial agonism to PPARγ and PPARα. In vivo, treatment with GQ-11 ameliorated insulin sensitivity and did not modify subcutaneous adipose tissue and body weight gain. In addition, GQ-11 restored adipokine imbalance induced by a diabetogenic diet and enhanced Glut-4 expression in the adipose tissue. Improved insulin sensitivity was also associated with lower levels of MCP-1 and higher levels of IL-10. Furthermore, GQ-11 reduced triglycerides and VLDL cholesterol and increased HDL-cholesterol by upregulation of Apoa1 and Abca1 gene expression in the liver. CONCLUSION: GQ-11 is a partial/dual PPARα/γ agonist that demonstrates anti-diabetic effects. Additionally, it improves the lipid profile and ameliorates chronic inflammation associated with obesity in atherosclerosis-prone mice.


Asunto(s)
Indoles/farmacología , Obesidad/metabolismo , Receptores Activados del Proliferador del Peroxisoma/agonistas , Receptores de LDL/metabolismo , Tiazolidinas/farmacología , Adipoquinas/sangre , Animales , Peso Corporal/efectos de los fármacos , Indoles/química , Inflamación/metabolismo , Lípidos/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Receptores de LDL/genética , Tiazolidinas/química
7.
Molecules ; 23(12)2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30518153

RESUMEN

A series of nine derivatives (2⁻10) were prepared from the diterpene solidagenone (1) and their structures were elucidated by means of spectroscopic studies. Their ability to inhibit inflammatory responses elicited in peritoneal macrophages by TLR ligands was investigated. Compounds 5 and 6 showed significant anti-inflammatory effects, as they inhibited the protein expression of nitric oxide synthase (NOS-2), cyclooxygenase-2 (COX-2), and cytokine production (TNF-α, IL-6, and IL-12) induced by the ligand of TLR4, lipopolysaccharide (LPS), acting at the transcriptional level. Some structure⁻activity relationships were outlined. Compound 5 was selected as a representative compound and molecular mechanisms involved in its biological activity were investigated. Inhibition of NF-κB and p38 signaling seems to be involved in the mechanism of action of compound 5. In addition, this compound also inhibited inflammatory responses mediated by ligands of TLR2 and TLR3 receptors. To rationalize the obtained results, molecular docking and molecular dynamic studies were carried out on TLR4. All these data indicate that solidagenone derivative 5 might be used for the design of new anti-inflammatory agents.


Asunto(s)
Antiinflamatorios/química , Antiinflamatorios/farmacología , Furanos/química , Furanos/farmacología , Naftalenos/química , Naftalenos/farmacología , Receptores Toll-Like , Animales , Células Cultivadas , Activación de Macrófagos/efectos de los fármacos , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Simulación del Acoplamiento Molecular , Receptores Toll-Like/agonistas , Receptores Toll-Like/antagonistas & inhibidores , Receptores Toll-Like/metabolismo
8.
Biochem J ; 473(14): 2061-71, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27154204

RESUMEN

Endothelial activation contributes to lung inflammatory disorders by inducing leucocyte recruitment to pulmonary parenchyma. Consequently, vascular-targeted therapies constitute promising strategies for the treatment of inflammatory pathologies. In the present study, we evaluated the effect of 8,9-dehydrohispanolone-15,16-lactol diterpene (DT) on lung endothelium during inflammation. Lung endothelial cells pre-treated with DT and activated with lipopolysaccharide (LPS) or tumour necrosis factor-α (TNF-α) exhibited reduced expression of the pro-inflammatory cytokines Cxcl10, Ccl5 and Cxcl1, whereas the anti-inflammatory molecules IL1r2 and IL-10 were induced. Consistent with this result, DT pre-treatment inhibited nuclear factor κB (NF-κB) nuclear translocation, by interfering with IκBα phosphorylation, and consequently NF-κB transcriptional activity in endothelium activated by LPS or TNF-α. Furthermore, DT, probably through p38 signalling, induced transcriptional activation of genes containing activator protein 1 (AP-1)-binding elements. Inhibition of p38 prevented IL1r2 mRNA expression in endothelium incubated with DT alone or in combination with LPS or TNF-α. Accordingly, conditioned medium (CM) from these cells failed to stimulate leucocytes as measured by a reduction in adhesive ability of the leucocyte cell line J774 to fibronectin (FN). Additionally, DT reduced the expression of the endothelial adhesion molecules E-selectin, vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) after activation. Similarly, expression of VCAM-1 and ICAM-1 molecules on the lung endothelial layer of C57/BL6 mice pre-treated with DT and challenged with LPS were unchanged. Finally, inhibition of vascular adhesion molecule expression by DT decreased the interaction of J774 cells with lung endothelial cells in an inflammatory environment. Our findings establish DT as a novel endothelial inhibitor for the treatment of inflammatory-related diseases triggered by Gram-negative bacteria or by the associated cytokine TNF-α.


Asunto(s)
Diterpenos/farmacología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Inflamación/prevención & control , Lipopolisacáridos/farmacología , Animales , Línea Celular , Quimiocina CCL5/metabolismo , Quimiocina CXCL1/metabolismo , Quimiocina CXCL10/metabolismo , Células Endoteliales/inmunología , Inflamación/inducido químicamente , Inflamación/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Molécula 1 de Adhesión Celular Vascular/metabolismo
9.
Pharmacol Res ; 104: 49-60, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26706782

RESUMEN

Peroxisome proliferator-activated receptor gamma (PPARγ) regulates multiple pathways involved in the pathogenesis of obesity and atherosclerosis. Here, we evaluated the therapeutic potential of GQ-177, a new thiazolidinedione, on diet-induced obesity and atherosclerosis. The intermolecular interaction between PPARγ and GQ-177 was examined by virtual docking and PPAR activation was determined by reporter gene assay identifying GQ-177 as a partial and selective PPARγ agonist. For the evaluation of biological activity of GQ-177, low-density lipoprotein receptor-deficient (LDLr(-/-)) C57/BL6 mice were fed either a high fat diabetogenic diet (diet-induced obesity), or a high fat atherogenic diet, and treated with vehicle, GQ-177 (20mg/kg/day), pioglitazone (20mg/kg/day, diet-induced obesity model) or rosiglitazone (15mg/kg/day, atherosclerosis model) for 28 days. In diet-induced obesity mice, GQ-177 improved insulin sensitivity and lipid profile, increased plasma adiponectin and GLUT4 mRNA in adipose tissue, without affecting body weight, food consumption, fat accumulation and bone density. Moreover, GQ-177 enhanced hepatic mRNA levels of proteins involved in lipid metabolism. In the atherosclerosis mice, GQ-177 inhibited atherosclerotic lesion progression, increased plasma HDL and mRNA levels of PPARγ and ATP-binding cassette A1 in atherosclerotic lesions. GQ-177 acts as a partial PPARγ agonist that improves obesity-associated insulin resistance and dyslipidemia with atheroprotective effects in LDLr(-/-) mice.


Asunto(s)
Aterosclerosis/metabolismo , Obesidad/metabolismo , PPAR gamma/agonistas , PPAR gamma/metabolismo , Receptores de LDL/genética , Sulfonas/farmacología , Tiazolidinedionas/farmacología , Adiponectina/genética , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Aorta Torácica/patología , Aterosclerosis/sangre , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/patología , Densidad Ósea , Línea Celular , HDL-Colesterol/sangre , Factores de Crecimiento de Fibroblastos/genética , Transportador de Glucosa de Tipo 4/genética , Humanos , Leptina/genética , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones Noqueados , Modelos Moleculares , Miocardio/metabolismo , Obesidad/sangre , Obesidad/tratamiento farmacológico , Obesidad/patología , Sulfonas/uso terapéutico , Tiazolidinedionas/uso terapéutico
10.
Toxicol Appl Pharmacol ; 286(3): 168-77, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25930665

RESUMEN

Hispanolone derivatives have been previously described as anti-inflammatory and antitumoral agents. However, their effects on overcoming Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resistance remain to be elucidated. In this study, we analyzed the cytotoxic effects of the synthetic hispanolone derivative α-hispanolol (α-H) in several tumor cell lines, and we evaluated the induction of apoptosis, as well as the TRAIL-sensitizing potential of α-H in the hepatocellular carcinoma cell line HepG2. Our data show that α-H decreased cell viability in a dose-dependent manner in HeLa, MDA-MB231, U87 and HepG2 cell lines, with a more prominent effect in HepG2 cells. Interestingly, α-H had no effect on non-tumoral cells. α-H induced activation of caspase-8 and caspase-9 and also increased levels of the proapoptotic protein Bax, decreasing antiapoptotic proteins (Bcl-2, X-IAP and IAP-1) in HepG2 cells. Specific inhibition of caspase-8 abrogated the cascade of caspase activation, suggesting that the extrinsic pathway has a critical role in the apoptotic events induced by α-H. Furthermore, combined treatment of α-H with TRAIL enhanced apoptosis in HepG2 cells, activating caspase-8 and caspase-9. This correlated with up-regulation of both the TRAIL death receptor DR4 and DR5. DR4 or DR5 neutralizing antibodies abolished the effect of α-H on TRAIL-induced apoptosis, suggesting that sensitization was mediated through the death receptor pathway. Our results demonstrate that α-H induced apoptosis in the human hepatocellular carcinoma cell line HepG2 through activation of caspases and induction of the death receptor pathway. In addition, we describe a novel function of α-H as a sensitizer on TRAIL-induced apoptotic cell death in HepG2 cells.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Diterpenos/farmacología , Neoplasias Hepáticas/metabolismo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/biosíntesis , Ligando Inductor de Apoptosis Relacionado con TNF/toxicidad , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Diterpenos/química , Relación Dosis-Respuesta a Droga , Células HeLa , Células Hep G2 , Humanos , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología
11.
Bioorg Med Chem Lett ; 25(19): 4210-3, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26264502

RESUMEN

A series of naphthoimidazoles derivatives (3a-3f) were tested for potential anti-inflammatory activity on lipopolysaccharide (LPS)-treated macrophages. Naphthoimidazole 3e exhibited significant inhibitory effects on nitric oxide (NO) production (IC50 <10µM) and decreased the expression of nitric oxide synthase-2 (NOS-2) and cycloxygenase-2 (COX-2) enzymes. It also inhibited the activation of transcription factor NF-κB. Naphthoimidazole 3e might represent a starting point for the synthesis of new anti-inflammatory naphthoimidazoles derivatives.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Ciclooxigenasa 2/metabolismo , Imidazoles/farmacología , Macrófagos/efectos de los fármacos , FN-kappa B/antagonistas & inhibidores , Naftoquinonas/farmacología , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico/antagonistas & inhibidores , Antiinflamatorios no Esteroideos/síntesis química , Antiinflamatorios no Esteroideos/química , Relación Dosis-Respuesta a Droga , Humanos , Imidazoles/síntesis química , Imidazoles/química , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Estructura Molecular , FN-kappa B/metabolismo , Naftoquinonas/síntesis química , Naftoquinonas/química , Óxido Nítrico/biosíntesis , Óxido Nítrico Sintasa de Tipo II/metabolismo , Relación Estructura-Actividad
12.
Immunogenetics ; 65(5): 333-43, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23370861

RESUMEN

Natural killer and CD8(+) T cells are believed to be involved in the immune protection against melanoma. Their function may be regulated by a group of receptors defined as killer immunoglobulin-like receptors (KIRs) and their cognate HLA class I ligands. In this study, we analyzed the influence of KIR genes and KIR/HLA-I combinations on melanoma susceptibility and/or prognosis in a Spanish Caucasian population. For this purpose, KIR genotyping by PCR-SSP and HLA-C genotyping by reverse PCR-SSO were performed in 187 melanoma patients and 200 matched controls. We found a significantly low frequency of KIR2DL3 in nodular melanoma (NM) patients (P = 0.001) and in ulcerated melanoma patients (P < 0.0001). Similarly, the KIR2DL3/C1 combination was significantly decreased in melanoma patients (Pc = 0.008) and in patients with sentinel lymph node (SLN) melanoma metastasis (Pc = 0.002). Multivariate logistic regression models showed that KIR2DL3 behaves as a protective marker for NM and ulcerated melanoma (P = 0.02, odds ratio (OR) = 0.14 and P = 0.04, OR = 0.28, respectively), whereas the KIR2DL3/C1 pair acts as a protective marker for melanoma (P = 0.017, OR = 0.54), particularly superficial spreading melanoma (P = 0.02, OR = 0.52), and SLN metastasis (P = 0.0004, OR = 0.14). In contrast, the KIR2DL3(-)/C1C2 genotype seems to be correlated with NM and ulceration. We also report that the KIR2DL1(+)/S1(-)/C2C2 genotype is associated with susceptibility to melanoma and SLN metastasis. Altogether, the study of KIR2D genes and HLA-C ligands may help in assessing cutaneous melanoma risk and prognosis.


Asunto(s)
Biomarcadores de Tumor/genética , Predisposición Genética a la Enfermedad , Variación Genética/genética , Antígenos HLA-C/genética , Melanoma/genética , Receptores KIR2DL3/genética , Neoplasias Cutáneas/genética , Femenino , Genotipo , Humanos , Metástasis Linfática , Masculino , Melanoma/patología , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Polimorfismo Conformacional Retorcido-Simple , Pronóstico , Neoplasias Cutáneas/secundario
13.
Bioorg Med Chem ; 21(9): 2471-7, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23545136

RESUMEN

In the present study, a series of metallic complexes of the 1,4-naphthoquinone lawsone (2-6) were synthesized and evaluated for potential cytotoxicity in a mouse leukemic macrophagic RAW 264.7 cell line. Cell viability was determined by the MTT assay. Significant growth inhibition was observed for the copper complex (4) with an IC(50) value of 2.5 µM. This compound was selected for further evaluation of cytotoxic activity on several human cancer cells including HT-29 (human colorectal adenocarcinoma), HepG2 (human hepatocellular carcinoma) and HeLa, (human cervical adenocarcinoma cells). Significant cell viability decrease was also observed in HepG2 cells. The apoptotic potential of this complex was evaluated in these cells. Compound 4 induced apoptosis by a mechanism that involves the activation of caspases 3, 8 and 9 and modulation of apoptotic-related proteins such as Bax, Bad, and p53. These results indicate that metal complexes of lawsone derivatives, in particular compound 4, might be used for the design of new antitumoral agents.


Asunto(s)
Antineoplásicos/farmacología , Naftoquinonas/química , Compuestos Organometálicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células HT29 , Células HeLa , Células Hep G2 , Humanos , Macrófagos/efectos de los fármacos , Modelos Moleculares , Estructura Molecular , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/química , Relación Estructura-Actividad , Células Tumorales Cultivadas
14.
Toxicol Appl Pharmacol ; 258(1): 109-17, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22036724

RESUMEN

Labdane derivatives obtained from the diterpenoid labdanediol suppressed NO and PGE(2) production in LPS-stimulated RAW 264.7 macrophages. However, mechanisms involved in these inhibitory effects are not elucidated. In this study, we investigated the signaling pathways involved in the anti-inflammatory effects of labdanolic acid methyl ester (LAME) in peritoneal macrophages and examined its therapeutic effect in a mouse endotoxic shock model. LAME reduced the production of NO and PGE(2) in LPS-activated macrophages. This effect involved the inhibition of NOS-2 and COX-2 gene expression, acting at the transcription level. Examination of the effects of the diterpene on NF-κB signaling showed that LAME inhibits the phosphorylation of IκBα and IκBß, preventing their degradation and the nuclear translocation of the NF-κB p65 subunit. Moreover, inhibition of MAPK signaling was also observed. A further experiment revealed that LAME inhibited the phosphorylation of transforming growth factor-ß (TGF-ß)-activated kinase 1 (TAK1), an upstream signaling molecule required for IKK and mitogen-activated protein kinases (MAPKs) activation. Inflammatory cytokines such as IL-6, TNF-α and IP-10 were downregulated in the presence of this compound after stimulation with LPS. Additionally, LAME also improved survival in a mouse model of endotoxemia and reduced the circulatory levels of cytokines (IL-6, TNF-α). In conclusion, these results indicate that labdane diterpene LAME significantly attenuates the pro-inflammatory response induced by LPS both in vivo and in vitro.


Asunto(s)
Antiinflamatorios/farmacología , Diterpenos/farmacología , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Animales , Dinoprostona/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos BALB C , FN-kappa B/antagonistas & inhibidores , Óxido Nítrico/antagonistas & inhibidores
15.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-35890124

RESUMEN

Dehydroisohispanolone (DIH), is a labdane diterpene that has exhibited anti-inflammatory activity via inhibition of NF-κB activation, although its potential effects on inflammasome activation remain unexplored. This study aims to elucidate whether DIH modulates NLR family pyrin domain-containing protein 3 (NLRP3) inflammasome in macrophages. Our findings show that DIH inhibited NLRP3 activation triggered by Nigericin (Nig), adenosine triphosphate (ATP) and monosodium urate (MSU) crystals, indicating broad inhibitory effects. DIH significantly attenuated caspase-1 activation and secretion of the interleukin-1ß (IL-1ß) in J774A.1 cells. Interestingly, the protein expressions of NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), pro-caspase-1 and pro-IL-1ß were not affected by DIH treatment. Furthermore, we found that DIH pretreatment also inhibited the lipopolysaccharide (LPS)-induced NLRP3 inflammasome priming stage. In addition, DIH alleviated pyroptosis mediated by NLRP3 inflammasome activation. Similar results on IL-1ß release were observed in Nig-activated bone marrow-derived macrophages (BMDMs). Covalent molecular docking analysis revealed that DIH fits well into the ATP-binding site of NLRP3 protein, forming a covalent bond with Cys415. In conclusion, our experiments show that DIH is an effective NLRP3 inflammasome inhibitor and provide new evidence for its application in the therapy of inflammation-related diseases.

16.
Gastroenterol Hepatol ; 34(5): 329-32, 2011 May.
Artículo en Español | MEDLINE | ID: mdl-21536347

RESUMEN

Familial adenomatous polyposis (FAP) is mainly characterized by the development of a large number of polyps in the gastrointestinal tract and by the risk of developing adenocarcinomas. We present the case of a woman diagnosed with FAP and liver metastases. Histological analysis revealed both diseases to be secondary to a neuroendocrine tumor. To date, only three cases showing the simultaneous occurrence of these two entities have been published. Currently, there is no genetic basis to explain the coexistence of these two diseases, both of which have a very low prevalence.


Asunto(s)
Poliposis Adenomatosa del Colon/complicaciones , Neoplasias Hepáticas/complicaciones , Neoplasias Hepáticas/secundario , Tumores Neuroendocrinos/complicaciones , Tumores Neuroendocrinos/secundario , Resultado Fatal , Femenino , Humanos , Adulto Joven
17.
Bioorg Med Chem ; 18(4): 1724-35, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-20116261

RESUMEN

Thirty one ent-kaurane derivatives were prepared from kaurenoic acid (1), grandiflorenic acid (16), 15alpha-acetoxy-kaurenoic acid (26) and 16alpha-hydroxy-kaurenoic acid (31). They were tested for their ability to inhibit cell viability in the mouse leukemic macrophagic RAW 264.7 cell line. The most effective compounds were 12, 20, 21, and 23. These were selected for further evaluation in other human cancer cell lines such as Hela, HepG2, and HT-29. Similar effects were obtained although RAW 264.7 cells were more sensitive. In addition, these compounds were significantly less cytotoxic in non-transformed cells. The apoptotic potential of the most active compounds was investigated and they were able to induce apoptosis with compound 12 being the best inducer. The caspase-3, -8 and -9 activities were measured. The results obtained showed that compounds 12, 21, and 23 induce apoptosis via the activation of caspase-8, whereas compound 20 induces apoptosis via caspase-9. Immunoblot analysis of the expression of p53, Bax, Bcl-2, Bcl-xl, and IAPs in RAW 264.7 cells was also carried out. When cells were exposed to 5 microM of the different compounds, expression levels of p53 and Bax increased whereas levels of antiapoptotic proteins such as Bc1-2, Bc1-x1, and IAPs decreased. In conclusion, kaurane derivatives (12, 20, 21, and 23) induce apoptosis via both the mitochondrial and membrane death receptor pathways, involving the Bcl-2 family proteins. Taken together these results provide a role of kaurane derivatives as apoptotic inducers in tumor cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Diterpenos de Tipo Kaurano/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Línea Celular Tumoral , Expresión Génica/efectos de los fármacos , Espectroscopía de Resonancia Magnética , Ratones , Espectrofotometría Infrarroja , Espectrofotometría Ultravioleta , Relación Estructura-Actividad
18.
Biochem Pharmacol ; 172: 113739, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31786260

RESUMEN

Increasing evidence supports NLRP3 inflammasome as a new target to control inflammation. Dysregulation of NLRP3 inflammasome has been reported to be involved in the pathogenesis of several human inflammatory diseases. However, no NLRP3 inflammasome inhibitors are available in clinic. Terpenoids are natural products with multi-target activities against inflammation. Recent studies have revealed that these compounds are capable of inhibiting the activation of NLRP3 inflammasome in several mouse models of NLRP3 inflammasome-related pathogenesis. Thus, terpenoids represent an interesting pharmacological approach for the treatment of inflammatory diseases as they are endowed with a dual mechanism of inhibition of NF-KB transcription factor and inflammasome activation, both critically involved in their anti-inflammatory effects. This work provides an overview of the current knowledge on the therapeutic potential of terpenoids as NLRP3 inflammasome inhibitors.


Asunto(s)
Inflamasomas/antagonistas & inhibidores , Inflamación/tratamiento farmacológico , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Terpenos/farmacología , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Inflamasomas/clasificación , Inflamasomas/metabolismo , Inflamación/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética
19.
Front Pharmacol ; 10: 935, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31551765

RESUMEN

α-Hispanolol (α-H) is a labdane diterpenoid that has been shown to induce apoptosis in several human cancer cells. However, the effect of α-H in human glioblastoma cells has not been described. In the present work, we have investigated the effects of α-H on apoptosis, migration, and invasion of human glioblastoma cells with the aim of identifying the molecular targets underlying its mechanism of action. The results revealed that α-H showed significant cytotoxicity against human glioma cancer cell lines U87 and U373 in a concentration- and time-dependent manner. This effect was higher in U87 cells and linked to apoptosis, as revealed the increased percentage of sub-G1 population by cell cycle analysis and acquisition of typical features of apoptotic cell morphology. Apoptosis was also confirmed by significant presence of annexin V-positive cells and caspase activation. Pretreatment with caspase inhibitors diminishes the activities of caspase 8, 9, and 3 and maintains the percentage of viable glioblastoma cells, indicating that α-H induced cell apoptosis through both the extrinsic and the intrinsic pathways. Moreover, we also found that α-H downregulated the anti-apoptotic Bcl-2 and Bcl-xL proteins and activated the pro-apoptotic Bid and Bax proteins. On the other hand, α-H exhibited inhibitory effects on the migration and invasion of U87 cells in a concentration-dependent manner. Furthermore, additional experiments showed that α-H treatment reduced the enzymatic activities and protein levels of matrix metalloproteinase MMP-2 and MMP-9 and increased the expression of TIMP-1 inhibitor, probably via p38MAPK regulation. Finally, xenograft assays confirmed the anti-glioma efficacy of α-H. Taken together, these findings suggest that α-H may exert anti-tumoral effects in vitro and in vivo through the inhibition of cell proliferation and invasion as well as by the induction of apoptosis in human glioblastoma cells. This research describes α-H as a new drug that may improve the therapeutic efficacy against glioblastoma tumors.

20.
Polymers (Basel) ; 11(7)2019 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-31331090

RESUMEN

Topical application of drops containing ocular drugs is the preferred non-invasive route to treat diseases that affect the anterior segment of the eye. However, the formulation of eye drops is a major challenge for pharmacists since the access of drugs to ocular tissues is restricted by several barriers. Acetazolamide (ACZ) is a carbonic anhydrase inhibitor used orally for the treatment of ocular hypertension in glaucoma. However, large ACZ doses are needed which results in systemic side effects. Recently, we synthesized copolymers based on 2-hydroxyethyl methacrylate (HEMA) and a functionalized three-arm poloxamer star (Bayfit-MA). The new material (HEMA/Bayfit-MA) was engineered to be transformed into nanoparticles without the use of surfactants, which represents a significant step forward in developing new ophthalmic drug delivery platforms. Acetazolamide-loaded nanocarriers (ACZ-NPs) were prepared via dialysis (224 ± 19 nm, -17.2 ± 0.4 mV). The in vitro release rate of ACZ was constant over 24 h (cumulative delivery of ACZ: 83.3 ± 8.4%). Following standard specifications, ACZ-NPs were not cytotoxic in vitro in cornea, conjunctiva, and macrophages. In normotensive rabbits, ACZ-NPs generated a significant intraocular pressure reduction compared to a conventional solution of ACZ (16.4% versus 9.6%) with the same dose of the hypotensive drug (20 µg). In comparison to previously reported studies, this formulation reduced intraocular pressure with a lower dose of ACZ. In summary, HEMA:Bayfit-MA nanoparticles may be a promising system for ocular topical treatments, showing an enhanced ocular bioavailability of ACZ after a single instillation on the ocular surface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA