Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Phys Chem A ; 128(31): 6540-6554, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39047199

RESUMEN

Relativistic exact two-component coupled-cluster calculations of molecular sensitivity factors for nuclear Schiff moments (NSMs) are reported. We focus on molecules containing heavy nuclei, especially octupole-deformed nuclei. Analytic relativistic coupled-cluster gradient techniques are used and serve as useful tools for identifying candidate molecules that sensitively probe for physics beyond the Standard Model in the hadronic sector. Notably, these tools enable straightforward "black-box" calculations. Two competing chemical mechanisms that contribute to the NSM are analyzed, illuminating the physics of ligand effects on NSM sensitivity factors.

2.
Phys Rev Lett ; 127(26): 263002, 2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35029484

RESUMEN

We present a robust, continuous molecular decelerator that employs high magnetic fields and few optical pumping steps. CaOH molecules are slowed, accumulating at low velocities in a range sufficient for loading both magnetic and magneto-optical traps. During the slowing, the molecules scatter only seven photons, removing around 8 K of energy. Because large energies can be removed with only a few spontaneous radiative decays, this method can in principle be applied to nearly any paramagnetic atomic or molecular species, opening a general path to trapping of complex molecules.

3.
J Chem Phys ; 155(9): 091101, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34496585

RESUMEN

We report a generally applicable computational and experimental approach to determine vibronic branching ratios in linear polyatomic molecules to the 10-5 level, including for nominally symmetry-forbidden transitions. These methods are demonstrated in CaOH and YbOH, showing approximately two orders of magnitude improved sensitivity compared with the previous state of the art. Knowledge of branching ratios at this level is needed for the successful deep laser cooling of a broad range of molecular species.

4.
J Phys Chem A ; 124(16): 3135-3148, 2020 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-32227956

RESUMEN

Medium resolution (Δν̃ ∼ 3 GHz) laser-induced fluorescence (LIF) excitation spectra of a rotationally cold sample of YbOH in the 17300-17950 cm-1 range have been recorded using two-dimensional (excitation and dispersed fluorescence) spectroscopy. High resolution (Δλ ∼ 0.65 nm) dispersed laser-induced fluorescence (DLIF) spectra and radiative decay curves of numerous bands detected in the medium resolution LIF excitation spectra were recorded. The vibronic energy levels of the X̃2Σ+ state were predicted using a discrete variable representation approach and compared with observations. The radiative decay curves were analyzed to produce fluorescence lifetimes. DLIF spectra resulting from high resolution (Δν̃ < 10 MHz) LIF excitation of individual low-rotational lines in the Ã2Π1/2(0,0,0)-X̃2Σ+(0,0,0), Ã2Π1/2(1,0,0)-X̃2Σ+(0,0,0), and [17.73]Ω = 0.5(0,0,0)-X̃2Σ+(0,0,0) bands were also recorded. The DLIF spectra were analyzed to determine branching ratios which were combined with radiative lifetimes to obtain transition dipole moments. The implications for laser cooling and trapping of YbOH are discussed.

5.
J Occup Environ Hyg ; 17(10): 447-456, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32960737

RESUMEN

Bioaerosols are known to be an important transmission pathway for SARS-CoV-2. We report a framework for estimating the risk of transmitting SARS-CoV-2 via aerosols in laboratory and office settings, based on an exponential dose-response model and analysis of air flow and purification in typical heating, ventilation, and air conditioning (HVAC) systems. High-circulation HVAC systems with high-efficiency particulate air (HEPA) filtration dramatically reduce exposure to the virus in indoor settings, and surgical masks or N95 respirators further reduce exposure. As an example of our risk assessment model, we consider the precautions needed for a typical experimental physical science group to maintain a low risk of transmission over six months of operation. We recommend that, for environments where fewer than five individuals significantly overlap, work spaces should remain vacant for between one (high-circulation HVAC with HEPA filtration) to six (low-circulation HVAC with no filtration) air exchange times before a new worker enters in order to maintain no more than 1% chance of infection over six months of operation in the workplace. Our model is readily applied to similar settings that are not explicitly given here. We also provide a framework for evaluating infection mitigation through ventilation in multiple occupancy spaces.


Asunto(s)
Contaminación del Aire Interior/prevención & control , Infecciones por Coronavirus/transmisión , Laboratorios/normas , Modelos Estadísticos , Neumonía Viral/transmisión , Ventilación/normas , Lugar de Trabajo/normas , Aire Acondicionado/normas , Betacoronavirus , COVID-19 , Infecciones por Coronavirus/epidemiología , Humanos , Salud Laboral , Pandemias , Neumonía Viral/epidemiología , Medición de Riesgo , SARS-CoV-2
6.
Nat Chem ; 14(9): 995-999, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35879444

RESUMEN

Molecular design principles provide guidelines for augmenting a molecule with a smaller group of atoms to realize a desired property or function. We demonstrate that these concepts can be used to create an optical cycling centre, the Ca(I)-O unit, that can be attached to a number of aromatic ligands, enabling the scattering of many photons from the resulting molecules without changing the molecular vibrational state. Such capability plays a central role in quantum state preparation and measurement, as well as laser cooling and trapping, and is therefore a prerequisite for many quantum science and technology applications. We provide further molecular design principles that indicate the ability to optimize and expand this work to an even broader class of molecules. This represents a great step towards a quantum functional group, which may serve as a generic qubit moiety that can be attached to a wide range of molecular structures and surfaces.


Asunto(s)
Luz , Fotones , Rayos Láser , Estructura Molecular , Compuestos Orgánicos
7.
J Phys Chem Lett ; 13(30): 7029-7035, 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35900113

RESUMEN

Rapid and repeated photon cycling has enabled precision metrology and the development of quantum information systems using atoms and simple molecules. Extending optical cycling to structurally complex molecules would provide new capabilities in these areas, as well as in ultracold chemistry. Increased molecular complexity, however, makes realizing closed optical transitions more difficult. Building on already established strong optical cycling of diatomic, linear triatomic, and symmetric top molecules, recent work has pointed the way to cycling of larger molecules, including phenoxides. The paradigm for these systems is an optical cycling center bonded to a molecular ligand. Theory has suggested that cycling may be extended to even larger ligands, like naphthalene, pyrene, and coronene. Herein, we study optical excitation and fluorescent vibrational branching of CaO-[Formula: see text], SrO-[Formula: see text], and CaO-[Formula: see text] and find only weak decay to excited vibrational states, indicating a promising path to full quantum control and laser cooling of large arene-based molecules.

8.
Health Phys ; 112(1): 33-41, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27906786

RESUMEN

The use of high voltage (HV) electrodes in vacuum is commonplace in physics laboratories. In such systems, it has long been known that electron emission from an HV cathode can lead to bremsstrahlung x rays; indeed, this is the basic principle behind the operation of standard x-ray sources. However, in laboratory setups where x-ray production is not the goal and no electron source is deliberately introduced, field-emitted electrons accelerated by HV can produce x rays as an unintended hazardous byproduct. Both the level of hazard and the safe operating regimes for HV vacuum electrode systems are not widely appreciated, at least in university laboratories. A reinforced awareness of the radiation hazards associated with vacuum HV setups would be beneficial. The authors present a case study of a HV vacuum electrode device operated in a university atomic physics laboratory. They describe the characterization of the observed x-ray radiation, its relation to the observed leakage current in the device, the steps taken to contain and mitigate the radiation hazard, and suggested safety guidelines.


Asunto(s)
Electrodos , Campos Electromagnéticos , Modelos Teóricos , Dosis de Radiación , Vacio , Rayos X , Simulación por Computador , Diseño de Equipo , Análisis de Falla de Equipo , Física/instrumentación , Radiometría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA