Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 16(6): e1008640, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32569299

RESUMEN

Ubiquitylation is a common post translational modification of eukaryotic proteins and in the human malaria parasite, Plasmodium falciparum (Pf) overall ubiquitylation increases in the transition from intracellular schizont to extracellular merozoite stages in the asexual blood stage cycle. Here, we identify specific ubiquitylation sites of protein substrates in three intraerythrocytic parasite stages and extracellular merozoites; a total of 1464 sites in 546 proteins were identified (data available via ProteomeXchange with identifier PXD014998). 469 ubiquitylated proteins were identified in merozoites compared with only 160 in the preceding intracellular schizont stage, suggesting a large increase in protein ubiquitylation associated with merozoite maturation. Following merozoite invasion of erythrocytes, few ubiquitylated proteins were detected in the first intracellular ring stage but as parasites matured through trophozoite to schizont stages the apparent extent of ubiquitylation increased. We identified commonly used ubiquitylation motifs and groups of ubiquitylated proteins in specific areas of cellular function, for example merozoite pellicle proteins involved in erythrocyte invasion, exported proteins, and histones. To investigate the importance of ubiquitylation we screened ubiquitin pathway inhibitors in a parasite growth assay and identified the ubiquitin activating enzyme (UBA1 or E1) inhibitor MLN7243 (TAK-243) to be particularly effective. This small molecule was shown to be a potent inhibitor of recombinant PfUBA1, and a structural homology model of MLN7243 bound to the parasite enzyme highlights avenues for the development of P. falciparum specific inhibitors. We created a genetically modified parasite with a rapamycin-inducible functional deletion of uba1; addition of either MLN7243 or rapamycin to the recombinant parasite line resulted in the same phenotype, with parasite development blocked at the schizont stage. Nuclear division and formation of intracellular structures was interrupted. These results indicate that the intracellular target of MLN7243 is UBA1, and this activity is essential for the final differentiation of schizonts to merozoites.


Asunto(s)
Merozoítos/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Ubiquitina/metabolismo , Ubiquitinación , Humanos , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Ubiquitina/genética
2.
EMBO Rep ; 21(3): e47832, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-31951090

RESUMEN

Nicotinamide adenine dinucleotide (NAD) and its phosphorylated form (NADP) are vital for cell function in all organisms and form cofactors to a host of enzymes in catabolic and anabolic processes. NAD(P) transhydrogenases (NTHs) catalyse hydride ion transfer between NAD(H) and NADP(H). Membrane-bound NTH isoforms reside in the cytoplasmic membrane of bacteria, and the inner membrane of mitochondria in metazoans, where they generate NADPH. Here, we show that malaria parasites encode a single membrane-bound NTH that localises to the crystalloid, an organelle required for sporozoite transmission from mosquitos to vertebrates. We demonstrate that NTH has an essential structural role in crystalloid biogenesis, whilst its enzymatic activity is required for sporozoite development. This pinpoints an essential function in sporogony to the activity of a single crystalloid protein. Its additional presence in the apicoplast of sporozoites identifies NTH as a likely supplier of NADPH for this organelle during liver infection. Our findings reveal that Plasmodium species have co-opted NTH to a variety of non-mitochondrial organelles to provide a critical source of NADPH reducing power.


Asunto(s)
Malaria/transmisión , NADP Transhidrogenasas , Animales , Mitocondrias/genética , NAD , NADP , NADP Transhidrogenasas/genética
3.
Mol Cell Proteomics ; 15(10): 3243-3255, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27432909

RESUMEN

An essential step in the transmission of the malaria parasite to the Anopheles vector is the transformation of the mature gametocytes into gametes in the mosquito gut, where they egress from the erythrocytes and mate to produce a zygote, which matures into a motile ookinete. Osmiophilic bodies are electron dense secretory organelles of the female gametocytes which discharge their contents during gamete formation, suggestive of a role in gamete egress. Only one protein with no functional annotation, Pfg377, is described to specifically reside in osmiophilic bodies in Plasmodium falciparum Importantly, Pfg377 defective gametocytes lack osmiophilic bodies and fail to infect mosquitoes, as confirmed here with newly produced pfg377 disrupted parasites. The unique feature of Pfg377 defective gametocytes of lacking osmiophilic bodies was here exploited to perform comparative, label free, global and affinity proteomics analyses of mutant and wild type gametocytes to identify components of these organelles. Subcellular localization studies with fluorescent reporter gene fusions and specific antibodies revealed an osmiophilic body localization for four out of five candidate gene products analyzed: the proteases PfSUB2 (subtilisin 2) and PfDPAP2 (Dipeptidyl aminopeptidase 2), the ortholog of the osmiophilic body component of the rodent malaria gametocytes PbGEST and a previously nonannotated 13 kDa protein. These results establish that osmiophilic bodies and their components are dispensable or marginally contribute (PfDPAP2) to gamete egress. Instead, this work reveals a previously unsuspected role of these organelles in P. falciparum development in the mosquito vector.


Asunto(s)
Orgánulos/metabolismo , Plasmodium falciparum/fisiología , Proteómica/métodos , Proteínas Protozoarias/análisis , Animales , Anopheles/parasitología , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Femenino , Células Germinativas/metabolismo , Mutación , Proteínas Protozoarias/genética , Subtilisinas/metabolismo
4.
Nucleic Acids Res ; 44(13): 6087-101, 2016 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-27298255

RESUMEN

Sexual differentiation of malaria parasites into gametocytes in the vertebrate host and subsequent gamete fertilization in mosquitoes is essential for the spreading of the disease. The molecular processes orchestrating these transitions are far from fully understood. Here, we report the first transcriptome analysis of male and female Plasmodium falciparum gametocytes coupled with a comprehensive proteome analysis. In male gametocytes there is an enrichment of proteins involved in the formation of flagellated gametes; proteins involved in DNA replication, chromatin organization and axoneme formation. On the other hand, female gametocytes are enriched in proteins required for zygote formation and functions after fertilization; protein-, lipid- and energy-metabolism. Integration of transcriptome and proteome data revealed 512 highly expressed maternal transcripts without corresponding protein expression indicating large scale translational repression in P. falciparum female gametocytes for the first time. Despite a high degree of conservation between Plasmodium species, 260 of these 'repressed transcripts' have not been previously described. Moreover, for some of these genes, protein expression is only reported in oocysts and sporozoites indicating that repressed transcripts can be partitioned into short- and long-term storage. Finally, these data sets provide an essential resource for identification of vaccine/drug targets and for further mechanistic studies.


Asunto(s)
Malaria Falciparum/genética , Plasmodium falciparum/genética , Proteoma/genética , Transcriptoma/genética , Cromatina/genética , Replicación del ADN/genética , Femenino , Gametogénesis/genética , Regulación de la Expresión Génica/genética , Humanos , Malaria Falciparum/parasitología , Masculino , Redes y Vías Metabólicas/genética , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/patogenicidad , Biosíntesis de Proteínas , Caracteres Sexuales
5.
Blood Cells Mol Dis ; 58: 35-44, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27067487

RESUMEN

The phosphorylation status of red blood cell proteins is strongly altered during the infection by the malaria parasite Plasmodium falciparum. We identify the key phosphorylation events that occur in the erythrocyte membrane and cytoskeleton during infection, by a comparative analysis of global phospho-proteome screens between infected (obtained at schizont stage) and uninfected RBCs. The meta-analysis of reported mass spectrometry studies revealed a novel compendium of 495 phosphorylation sites in 182 human proteins with regulatory roles in red cell morphology and stability, with about 25% of these sites specific to infected cells. A phosphorylation motif analysis detected 7 unique motifs that were largely mapped to kinase consensus sequences of casein kinase II and of protein kinase A/protein kinase C. This analysis highlighted prominent roles for PKA/PKC involving 78 phosphorylation sites. We then compared the phosphorylation status of PKA (PKC) specific sites in adducin, dematin, Band 3 and GLUT-1 in uninfected RBC stimulated or not by cAMP to their phosphorylation status in iRBC. We showed cAMP-induced phosphorylation of adducin S59 by immunoblotting and we were able to demonstrate parasite-induced phosphorylation for adducin S726, Band 3 and GLUT-1, corroborating the protein phosphorylation status in our erythrocyte phosphorylation site compendium.


Asunto(s)
Eritrocitos/parasitología , Malaria Falciparum/metabolismo , Plasmodium falciparum/fisiología , Proteoma/metabolismo , Secuencia de Aminoácidos , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/análisis , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Citoesqueleto/química , Citoesqueleto/metabolismo , Citoesqueleto/parasitología , Eritrocitos/química , Eritrocitos/metabolismo , Transportador de Glucosa de Tipo 1/análisis , Transportador de Glucosa de Tipo 1/metabolismo , Humanos , Fosforilación , Proteoma/análisis
6.
Proteomics ; 15(15): 2716-29, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25886026

RESUMEN

Pathology of the most lethal form of malaria is caused by Plasmodium falciparum asexual blood stages and initiated by merozoite invasion of erythrocytes. We present a phosphoproteome analysis of extracellular merozoites revealing 1765 unique phosphorylation sites including 785 sites not previously detected in schizonts. All MS data have been deposited in the ProteomeXchange with identifier PXD001684 (http://proteomecentral.proteomexchange.org/dataset/PXD001684). The observed differential phosphorylation between extra and intraerythrocytic life-cycle stages was confirmed using both phospho-site and phospho-motif specific antibodies and is consistent with the core motif [K/R]xx[pS/pT] being highly represented in merozoite phosphoproteins. Comparative bioinformatic analyses highlighted protein sets and pathways with established roles in invasion. Within the merozoite phosphoprotein interaction network a subnetwork of 119 proteins with potential roles in cellular movement and invasion was identified and suggested that it is coregulated by a further small subnetwork of protein kinase A (PKA), two calcium-dependent protein kinases (CDPKs), a phosphatidyl inositol kinase (PI3K), and a GCN2-like elF2-kinase with a predicted role in translational arrest and associated changes in the ubquitinome. To test this notion experimentally, we examined the overall ubiquitination level in intracellular schizonts versus extracellular merozoites and found it highly upregulated in merozoites. We propose that alterations in the phosphoproteome and ubiquitinome reflect a starvation-induced translational arrest as intracellular schizonts transform into extracellular merozoites.


Asunto(s)
Eritrocitos/parasitología , Merozoítos/metabolismo , Plasmodium falciparum/metabolismo , Proteoma/metabolismo , Proteínas Protozoarias/metabolismo , Esquizontes/metabolismo , Espacio Extracelular/parasitología , Interacciones Huésped-Parásitos , Humanos , Merozoítos/crecimiento & desarrollo , Fosforilación , Plasmodium falciparum/citología , Plasmodium falciparum/fisiología , Esquizontes/crecimiento & desarrollo
7.
Blood ; 118(20): 5652-63, 2011 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-21951684

RESUMEN

Acanthocytic RBCs are a peculiar diagnostic feature of chorea-acanthocytosis (ChAc), a rare autosomal recessive neurodegenerative disorder. Although recent years have witnessed some progress in the molecular characterization of ChAc, the mechanism(s) responsible for generation of acanthocytes in ChAc is largely unknown. As the membrane protein composition of ChAc RBCs is similar to that of normal RBCs, we evaluated the tyrosine (Tyr)-phosphorylation profile of RBCs using comparative proteomics. Increased Tyr phosphorylation state of several membrane proteins, including band 3, ß-spectrin, and adducin, was noted in ChAc RBCs. In particular, band 3 was highly phosphorylated on the Tyr-904 residue, a functional target of Lyn, but not on Tyr-8, a functional target of Syk. In ChAc RBCs, band 3 Tyr phosphorylation by Lyn was independent of the canonical Syk-mediated pathway. The ChAc-associated alterations in RBC membrane protein organization appear to be the result of increased Tyr phosphorylation leading to altered linkage of band 3 to the junctional complexes involved in anchoring the membrane to the cytoskeleton as supported by coimmunoprecipitation of ß-adducin with band 3 only in ChAc RBC-membrane treated with the Lyn-inhibitor PP2. We propose this altered association between membrane skeleton and membrane proteins as novel mechanism in the generation of acanthocytes in ChAc.


Asunto(s)
Acantocitos/enzimología , Membrana Eritrocítica/enzimología , Neuroacantocitosis/metabolismo , Familia-src Quinasas/metabolismo , Acantocitos/patología , Adulto , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Proteínas del Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Activación Enzimática/fisiología , Membrana Eritrocítica/patología , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Persona de Mediana Edad , Neuroacantocitosis/patología , Fosforilación/fisiología , Proteínas Tirosina Quinasas/metabolismo , Proteómica , Quinasa Syk , Tirosina/metabolismo
8.
Proteomics ; 12(9): 1349-62, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22589185

RESUMEN

Most eukaryotic cells depend on mitochondrial OXidative PHOSphorylation (OXPHOS) in their ATP supply. The cellular consequences of OXPHOS defects and the pathophysiological mechanisms in related disorders are incompletely understood. Using a quantitative proteomics approach we provide evidence that a genetic defect of complex-I of the OXPHOS system may associate with transcriptional derangements of mitochondrial biogenesis through stabilization of the master transcriptional regulator PPARγ co-activator 1α (PGC-1α) protein. Chronic oxidative stress suppresses the gene expression of PGC-1α but concomitant inhibition of the ubiquitin-proteasome system (UPS) can stabilize this co-activator protein, thereby inducing its downstream metabolic gene expression programs. Thus, mitochondrial biogenesis, which lays at the heart of the homeostatic control of energy metabolism, can be deregulated by secondary impairments of the protein turnover machinery.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina/metabolismo , Células Cultivadas , Complejo I de Transporte de Electrón , Fibroblastos , Expresión Génica , Proteínas de Choque Térmico/genética , Humanos , Peróxido de Hidrógeno/metabolismo , Proteínas Mitocondriales/análisis , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Fosforilación Oxidativa , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Proteoma , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción/genética
9.
J Proteome Res ; 11(11): 5323-37, 2012 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-23025827

RESUMEN

The asexual blood stages of Plasmodium falciparum cause the most lethal form of human malaria. During growth within an infected red blood cell, parasite multiplication and formation of invasive merozoites is called schizogony. Here, we present a detailed analysis of the phosphoproteome of P. falciparum schizonts revealing 2541 unique phosphorylation sites, including 871 novel sites. Prominent roles for cAMP-dependent protein kinase A- and phosphatidylinositol-signaling were identified following analysis by functional enrichment, phosphoprotein interaction network clustering and phospho-motif identification tools. We observed that most key enzymes in the inositol pathway are phosphorylated, which strongly suggests additional levels of regulation and crosstalk with other protein kinases that coregulate different biological processes. A distinct pattern of phosphorylation of proteins involved in merozoite egress and red blood cell invasion was noted. The analyses also revealed that cAMP-PKA signaling is implicated in a wide variety of processes including motility. We verified this finding experimentally using an in vitro kinase assay and identified three novel PKA substrates associated with the glideosome motor complex: myosin A, GAP45 and CDPK1. Therefore, in addition to an established role for CDPK1 in the motor complex, this study reveals the coinvolvement of PKA, further implicating cAMP as an important regulator of host cell invasion.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fosfatidilinositoles/metabolismo , Fosfoproteínas/metabolismo , Plasmodium falciparum/metabolismo , Proteoma , Proteínas Protozoarias/metabolismo , Transducción de Señal , Animales , Cromatografía Liquida , Electroforesis en Gel de Poliacrilamida , Espectrometría de Masas en Tándem
10.
PLoS Pathog ; 6(2): e1000767, 2010 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-20169188

RESUMEN

A universal feature of metazoan sexual development is the generation of oocyte P granules that withhold certain mRNA species from translation to provide coding potential for proteins during early post-fertilization development. Stabilisation of translationally quiescent mRNA pools in female Plasmodium gametocytes depends on the RNA helicase DOZI, but the molecular machinery involved in the silencing of transcripts in these protozoans is unknown. Using affinity purification coupled with mass-spectrometric analysis we identify a messenger ribonucleoprotein (mRNP) from Plasmodium berghei gametocytes defined by DOZI and the Sm-like factor CITH (homolog of worm CAR-I and fly Trailer Hitch). This mRNP includes 16 major factors, including proteins with homologies to components of metazoan P granules and archaeal proteins. Containing translationally silent transcripts, this mRNP integrates eIF4E and poly(A)-binding protein but excludes P body RNA degradation factors and translation-initiation promoting eIF4G. Gene deletion mutants of 2 core components of this mRNP (DOZI and CITH) are fertilization-competent, but zygotes fail to develop into ookinetes in a female gametocyte-mutant fashion. Through RNA-immunoprecipitation and global expression profiling of CITH-KO mutants we highlight CITH as a crucial repressor of maternally supplied mRNAs. Our data define Plasmodium P granules as an ancient mRNP whose protein core has remained evolutionarily conserved from single-cell organisms to germ cells of multi-cellular animals and stores translationally silent mRNAs that are critical for early post-fertilization development during the initial stages of mosquito infection. Therefore, translational repression may offer avenues as a target for the generation of transmission blocking strategies and contribute to limiting the spread of malaria.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Plasmodium berghei/fisiología , Proteínas Protozoarias/fisiología , Interferencia de ARN/fisiología , Animales , Southern Blotting , Western Blotting , Femenino , Citometría de Flujo , Expresión Génica , Perfilación de la Expresión Génica , Células Germinativas , Inmunoprecipitación , Filogenia , ARN Mensajero/genética , Ribonucleoproteínas/fisiología , Desarrollo Sexual , Cigoto
11.
Cell Microbiol ; 13(12): 1956-74, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21899698

RESUMEN

Human FACT (facilitates chromatin transcription) consists of the proteins SPT16 and SSRP1 and acts as a histone chaperone in the (dis)assembly of nucleosome (and thereby chromatin) structure during transcription and DNA replication. We identified a Plasmodium berghei protein, termed FACT-L, with homology to the SPT16 subunit of FACT. Epitope tagging of FACT-L showed nuclear localization with high expression in the nuclei of (activated) male gametocytes. The gene encoding FACT-L could not be deleted indicating an essential role during blood-stage development. Using a 'promoter-swap' approach whereby the fact-l promoter was replaced by an 'asexual blood stage-specific' promoter that is silent in gametocytes, transcription of fact-l in promoter-swap mutant gametocytes was downregulated compared with wild-type gametocytes. These mutant male gametocytes showed delayed DNA replication and gamete formation. Male gamete fertility was strongly reduced while female gamete fertility was unaffected; residual ookinetes generated oocysts that arrested early in development and failed to enter sporogony. Therefore FACT is critically involved in the formation of fertile male gametes and parasite transmission. 'Promoter swapping' is a powerful approach for the functional analysis of proteins in gametocytes (and beyond) that are essential during asexual blood-stage development.


Asunto(s)
Células Germinativas/fisiología , Chaperonas de Histonas/metabolismo , Plasmodium berghei/fisiología , Proteínas Protozoarias/metabolismo , Animales , Anopheles/parasitología , Núcleo Celular/metabolismo , Replicación del ADN , ADN Protozoario/genética , ADN Protozoario/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo , Mapeo Epitopo , Femenino , Fertilidad , Flagelos/metabolismo , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Células Germinativas/metabolismo , Chaperonas de Histonas/genética , Ratones , Oocistos/metabolismo , Oocistos/fisiología , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Regiones Promotoras Genéticas , Biosíntesis de Proteínas , Proteínas Protozoarias/genética , Transcripción Genética
12.
Mol Cell Proteomics ; 9(7): 1437-48, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20332084

RESUMEN

Despite over a century of study of malaria parasites, parts of the Plasmodium falciparum life cycle remain virtually unknown. One of these is the early gametocyte stage, a round shaped cell morphologically similar to an asexual trophozoite in which major cellular transformations ensure subsequent development of the elongated gametocyte. We developed a protocol to obtain for the first time highly purified preparations of early gametocytes using a transgenic line expressing a green fluorescent protein from the onset of gametocytogenesis. We determined the cellular proteome (1427 proteins) of this parasite stage by high accuracy tandem mass spectrometry and newly determined the proteomes of asexual trophozoites and mature gametocytes, identifying altogether 1090 previously undetected parasite proteins. Quantitative label-free comparative proteomics analysis determined enriched protein clusters for the three parasite developmental stages. Gene set enrichment analysis on the 251 proteins enriched in the early gametocyte proteome revealed that proteins putatively exported and involved in erythrocyte remodeling are the most overrepresented protein set in these stages. One-tenth of the early gametocyte-enriched proteome is constituted of putatively exported proteins, here named PfGEXPs (P. falciparum gametocyte-exported proteins). N-terminal processing and N-acetylation at a conserved leucine residue within the Plasmodium export element pentamotif were detected by mass spectrometry for three such proteins in the early but not in the mature gametocyte sample, further supporting a specific role in protein export in early gametocytogenesis. Previous reports and results of our experiments confirm that the three proteins are indeed exported in the erythrocyte cytoplasm. This work indicates that protein export profoundly marks early sexual differentiation in P. falciparum, probably contributing to host cell remodeling in this phase of the life cycle, and that gametocyte-enriched molecules are recruited to modulate this process in gametocytogenesis.


Asunto(s)
Plasmodium falciparum/citología , Plasmodium falciparum/metabolismo , Plasmodium falciparum/fisiología , Proteínas Protozoarias/metabolismo , Secuencia de Aminoácidos , Animales , Femenino , Humanos , Estadios del Ciclo de Vida/fisiología , Malaria Falciparum , Masculino , Datos de Secuencia Molecular , Plasmodium falciparum/patogenicidad , Proteoma/análisis , Espectrometría de Masas en Tándem/métodos
13.
Curr Biol ; 18(3): 168-76, 2008 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-18258429

RESUMEN

BACKGROUND: The maintenance of the body's Mg(2+) balance is of great importance because of its involvement in numerous enzymatic systems and its intervention in neuromuscular excitability, protein synthesis, and nucleic acid stability. Recently, the transient receptor potential melastatin 6 (TRPM6) was identified as the gatekeeper of active Mg(2+) transport and therefore plays a crucial role in the regulation of Mg(2+) homeostasis. Remarkably, TRPM6 combines a Mg(2+) channel with an alpha-kinase domain whose function remains elusive. RESULTS: Here, we identify the receptor for activated C-kinase 1 (RACK1) as the first regulatory protein of TRPM6 that associates with the alpha-kinase domain. RACK1 and TRPM6 are both present in renal Mg(2+)-transporting distal convoluted tubules. We demonstrate that RACK1 inhibits channel activity in an alpha-kinase activity-dependent manner, whereas small interference (si) RNA-mediated knockdown of RACK1 increases the current. Moreover, threonine(1851) in the alpha-kinase domain was identified as an autophosphorylation site of which the phosphorylation state is essential for the inhibitory effect of RACK1. Importantly, threonine(1851) was crucial for the Mg(2+) sensitivity of TRPM6 autophosphorylation and channel activity. TRPM6 channel activity was less sensitive to Mg(2+) when RACK1 was knocked down by siRNA. Finally, activation of protein kinase C by phorbol 12-myristate 13-acetate-PMA prohibited the inhibitory effect of RACK1 on TRPM6 channel activity. CONCLUSIONS: We propose a unique mode of TRPM6 regulation in which the Mg(2+) influx is controlled by RACK1 through its interaction with the alpha-kinase and the phosphorylation state of the threonine(1851) residue.


Asunto(s)
Fosfotransferasas/metabolismo , Receptores de Superficie Celular/metabolismo , Canales Catiónicos TRPM/antagonistas & inhibidores , Canales Catiónicos TRPM/metabolismo , Animales , Sitios de Unión , Línea Celular , Membrana Celular/enzimología , Membrana Celular/metabolismo , Regulación de la Expresión Génica , Biblioteca de Genes , Humanos , Riñón/metabolismo , Ratones , Fosforilación , Unión Proteica , Proteína Quinasa C/metabolismo , Estructura Terciaria de Proteína , Receptores de Cinasa C Activada , Receptores de Superficie Celular/genética , Canales Catiónicos TRPM/química , Canales Catiónicos TRPM/genética , Técnicas del Sistema de Dos Híbridos
14.
Front Microbiol ; 12: 684005, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34108954

RESUMEN

We review the role of signaling pathways in regulation of the key processes of merozoite egress and red blood cell invasion by Plasmodium falciparum and, in particular, the importance of the second messengers, cAMP and Ca2+, and cyclic nucleotide dependent kinases. cAMP-dependent protein kinase (PKA) is comprised of cAMP-binding regulatory, and catalytic subunits. The less well conserved cAMP-binding pockets should make cAMP analogs attractive drug leads, but this approach is compromised by the poor membrane permeability of cyclic nucleotides. We discuss how the conserved nature of ATP-binding pockets makes ATP analogs inherently prone to off-target effects and how ATP analogs and genetic manipulation can be useful research tools to examine this. We suggest that targeting PKA interaction partners as well as substrates, or developing inhibitors based on PKA interaction sites or phosphorylation sites in PKA substrates, may provide viable alternative approaches for the development of anti-malarial drugs. Proximity of PKA to a substrate is necessary for substrate phosphorylation, but the P. falciparum genome encodes few recognizable A-kinase anchor proteins (AKAPs), suggesting the importance of PKA-regulatory subunit myristylation and membrane association in determining substrate preference. We also discuss how Pf14-3-3 assembles a phosphorylation-dependent signaling complex that includes PKA and calcium dependent protein kinase 1 (CDPK1) and how this complex may be critical for merozoite invasion, and a target to block parasite growth. We compare altered phosphorylation levels in intracellular and egressed merozoites to identify potential PKA substrates. Finally, as host PKA may have a critical role in supporting intracellular parasite development, we discuss its role at other stages of the life cycle, as well as in other apicomplexan infections. Throughout our review we propose possible new directions for the therapeutic exploitation of cAMP-PKA-signaling in malaria and other diseases caused by apicomplexan parasites.

15.
J Proteome Res ; 9(4): 1727-37, 2010 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-20131907

RESUMEN

Gene expression is commonly used to study the activation of dendritic cells (DCs) to identify proteins that determine whether these cells induce an immunostimulatory or tolerogenic immune response. RNA expression, however, does not necessarily predict protein abundance and often requires large numbers of experiments for statistical significance. Proteomics provides a direct view on protein expression but is costly and time consuming. Here, we combined a comprehensive quantitative proteome and transcriptome analysis on a single batch of immature and cytokine cocktail matured human DCs and integrated resulting data sets at the pathway level. Although overall correlation between differential mRNA and protein expression was low, correlation between components of DC relevant pathways was significantly higher. Differentially expressed proteins and genes partly mapped to identical but also to different pathway components demonstrating that RNA and protein data not only supported but also complemented each other. We identified 5 dominant pathways, which confirmed the importance of cytokines, cell adhesion, and migration in DC maturation and also indicated a fundamental role for lipid metabolism. From these pathways we extracted novel maturation markers that might improve DC vaccine design. For several of the candidate markers we confirmed widespread significance examining DCs from multiple individuals, underscoring the validity of our approach. We conclude that integration of different but related data sets at the pathway level can significantly increase the predictive power of multi "omics" analyses.


Asunto(s)
Células Dendríticas/fisiología , Perfilación de la Expresión Génica/métodos , Proteoma/metabolismo , Adhesión Celular , Diferenciación Celular , Movimiento Celular , Citocinas/genética , Citocinas/metabolismo , Células Dendríticas/citología , Citometría de Flujo , Humanos , Proteoma/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Transducción de Señal
16.
PLoS Pathog ; 4(10): e1000195, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18974882

RESUMEN

Plasmodium falciparum sporozoites that develop and mature inside an Anopheles mosquito initiate a malaria infection in humans. Here we report the first proteomic comparison of different parasite stages from the mosquito -- early and late oocysts containing midgut sporozoites, and the mature, infectious salivary gland sporozoites. Despite the morphological similarity between midgut and salivary gland sporozoites, their proteomes are markedly different, in agreement with their increase in hepatocyte infectivity. The different sporozoite proteomes contain a large number of stage specific proteins whose annotation suggest an involvement in sporozoite maturation, motility, infection of the human host and associated metabolic adjustments. Analyses of proteins identified in the P. falciparum sporozoite proteomes by orthologous gene disruption in the rodent malaria parasite, P. berghei, revealed three previously uncharacterized Plasmodium proteins that appear to be essential for sporozoite development at distinct points of maturation in the mosquito. This study sheds light on the development and maturation of the malaria parasite in an Anopheles mosquito and also identifies proteins that may be essential for sporozoite infectivity to humans.


Asunto(s)
Plasmodium falciparum/química , Plasmodium falciparum/crecimiento & desarrollo , Proteoma/análisis , Proteínas Protozoarias/análisis , Animales , Anopheles/parasitología , Bases de Datos Genéticas , Humanos , Malaria Falciparum/parasitología , Ratones , Ratones Noqueados , Oocistos/química , Oocistos/crecimiento & desarrollo , Plasmodium berghei/química , Plasmodium berghei/genética , Plasmodium berghei/crecimiento & desarrollo , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidad , Proteómica , Proteínas Protozoarias/genética , Glándulas Salivales/parasitología , Esporozoítos/química , Esporozoítos/crecimiento & desarrollo
17.
J Proteomics ; 227: 103925, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32736136

RESUMEN

Passage of malaria parasites through mosquitoes involves multiple developmental transitions, from gametocytes that are ingested with the blood meal, through to sporozoites that are transmitted by insect bite to the host. During the transformation from gametocyte to oocyst, the parasite forms a unique transient organelle named the crystalloid, which is involved in sporozoite formation. In Plasmodium berghei, a complex of six LCCL domain-containing proteins (LAPs) reside in the crystalloid and are required for its biogenesis. However, little else is known about the molecular mechanisms that underlie the crystalloid's role in sporogony. In this study, we have used transgenic parasites stably expressing LAP3 fused to GFP, combined with GFP affinity pulldown and high accuracy mass spectrometry, to identify an extended LAP interactome of some fifty proteins. We show that many of these are targeted to the crystalloid, including members of two protein families with CPW-WPC and pleckstrin homology-like domains, respectively. Our findings indicate that the LAPs are part of an intricate protein complex, the formation of which facilitates both crystalloid targeting and biogenesis. SIGNIFICANCE: Reducing malaria parasite transmission by mosquitoes is a key component of malaria eradication and control strategies. This study sheds important new light on the molecular composition of the crystalloid, an enigmatic parasite organelle that is essential for sporozoite formation and transmission from the insect to the vertebrate host. Our findings provide new mechanistic insight into how proteins are delivered to the crystalloid, and indicate that the molecular mechanisms that underlie crystalloid function are complex, involving several protein families unique to Plasmodium and closely related organisms. The new crystalloid proteins identified will form a useful starting point for studies aimed at unravelling how the crystalloid organelle facilitates sporogony and transmission.


Asunto(s)
Malaria , Plasmodium berghei , Animales , Soluciones Cristaloides , Humanos , Orgánulos , Proteínas Protozoarias
18.
Proteomes ; 8(2)2020 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-32244435

RESUMEN

Microvesicle generation is an integral part of the aging process of red blood cells in vivo and in vitro. Extensive vesiculation impairs function and survival of red blood cells after transfusion, and microvesicles contribute to transfusion reactions. The triggers and mechanisms of microvesicle generation are largely unknown. In this study, we combined morphological, immunochemical, proteomic, lipidomic, and metabolomic analyses to obtain an integrated understanding of the mechanisms underlying microvesicle generation during the storage of red blood cell concentrates. Our data indicate that changes in membrane organization, triggered by altered protein conformation, constitute the main mechanism of vesiculation, and precede changes in lipid organization. The resulting selective accumulation of membrane components in microvesicles is accompanied by the recruitment of plasma proteins involved in inflammation and coagulation. Our data may serve as a basis for further dissection of the fundamental mechanisms of red blood cell aging and vesiculation, for identifying the cause-effect relationship between blood bank storage and transfusion complications, and for assessing the role of microvesicles in pathologies affecting red blood cells.

19.
Mol Cell Biol ; 26(3): 843-51, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16428440

RESUMEN

The human genome contains a number of methyl CpG binding proteins that translate DNA methylation into a physiological response. To gain insight into the function of MBD2 and MBD3, we first applied protein tagging and mass spectrometry. We show that MBD2 and MBD3 assemble into mutually exclusive distinct Mi-2/NuRD-like complexes, called MBD2/NuRD and MBD3/NuRD. We identified DOC-1, a putative tumor suppressor, as a novel core subunit of MBD2/NuRD as well as MBD3/NuRD. PRMT5 and its cofactor MEP50 were identified as specific MBD2/NuRD interactors. PRMT5 stably and specifically associates with and methylates the RG-rich N terminus of MBD2. Chromatin immunoprecipitation experiments revealed that PRMT5 and MBD2 are recruited to CpG islands in a methylation-dependent manner in vivo and that H4R3, a substrate of PRMT, is methylated at these loci. Our data show that MBD2/NuRD and MBD3/NuRD are distinct protein complexes with different biochemical and functional properties.


Asunto(s)
Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Histona Desacetilasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Bases , Células Cultivadas , Cromatina/metabolismo , Citocinas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2 , Datos de Secuencia Molecular , Proteína Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas , Proteínas Supresoras de Tumor
20.
Mol Cell Biol ; 26(14): 5226-36, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16809761

RESUMEN

Transcription in eukaryotes is governed in part by histone acetyltransferase (HAT)- and histone deacetylase (HDAC)-containing complexes that are recruited via activators and repressors, respectively. Here, we show that the Sin3/HDAC and N-CoR/SMRT corepressor complexes repress transcription from histone H3- and/or H4-acetylated nucleosomal templates in vitro. Repression of histone H3-acetylated templates was completely dependent on the histone deacetylase activity of the corepressor complexes, whereas this activity was not required to repress H4-acetylated templates. Following deacetylation, both complexes become stably anchored in a repressor-independent manner to nucleosomal templates containing hypoacetylated histone H3, but not H4, resulting in dominance of repression over activation. The observed stable anchoring of corepressor complexes casts doubt on the view of a dynamic balance between readily exchangeable HAT and HDAC activities regulating transcription and implies that pathways need to be in place to actively remove HDAC complexes from hypoacetylated promoters to switch on silent genes.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Histona Desacetilasas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Acetilación , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sitios de Unión , Cromatina/metabolismo , ADN/genética , ADN/metabolismo , Proteínas de Unión al ADN/química , Retroalimentación , Células HeLa , Histona Desacetilasas/química , Histonas/química , Histonas/genética , Histonas/metabolismo , Humanos , Técnicas In Vitro , Datos de Secuencia Molecular , Complejos Multiproteicos , Proteínas Nucleares/química , Co-Represor 1 de Receptor Nuclear , Co-Represor 2 de Receptor Nuclear , Nucleosomas/metabolismo , Regiones Promotoras Genéticas , Proteínas Represoras/química , Saccharomyces cerevisiae/metabolismo , Complejo Correpresor Histona Desacetilasa y Sin3 , Transcripción Genética , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA