Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Transgenic Res ; 33(3): 149-157, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38842603

RESUMEN

RNA silencing is an innate immune mechanism of plants against invasion by viral pathogens. Artificial microRNA (amiRNA) can be engineered to specifically induce RNA silencing against viruses in transgenic plants and has great potential for disease control. Here, we describe the development and application of amiRNA-based technology to induce resistance to soybean mosaic virus (SMV), a plant virus with a positive-sense single-stranded RNA genome. We have shown that the amiRNA targeting the SMV P1 coding region has the highest antiviral activity than those targeting other SMV genes in a transient amiRNA expression assay. We transformed the gene encoding the P1-targeting amiRNA and obtained stable transgenic Nicotiana benthamiana lines (amiR-P1-3-1-2-1 and amiR-P1-4-1-2-1). Our results have demonstrated the efficient suppression of SMV infection in the P1-targeting amiRNA transgenic plants in an expression level-dependent manner. In particular, the amiR-P1-3-1-2-1 transgenic plant showed high expression of amiR-P1 and low SMV accumulation after being challenged with SMV. Thus, a transgenic approach utilizing the amiRNA technology appears to be effective in generating resistance to SMV.


Asunto(s)
Resistencia a la Enfermedad , MicroARNs , Nicotiana , Enfermedades de las Plantas , Plantas Modificadas Genéticamente , Potyvirus , MicroARNs/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/virología , Plantas Modificadas Genéticamente/inmunología , Nicotiana/genética , Nicotiana/virología , Nicotiana/inmunología , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Resistencia a la Enfermedad/genética , Potyvirus/patogenicidad , Potyvirus/genética , Interferencia de ARN , Glycine max/genética , Glycine max/virología , Glycine max/inmunología
2.
AMB Express ; 12(1): 41, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35403927

RESUMEN

Glutathione (GSH) peroxidases (GPxs or GSHPx) and thioredoxin (Trx) peroxidases (TPxs) are two classes of peroxidases that catalyze the reduction of peroxides. GPxs and TPxs generally use GSH or Trx, respectively, to recycle the oxidized cysteine (Cys) residue in the protein. However, it is unclear why unlike human GPxs, the Schizosaccharomyces pombe Gpx1 (spGpx1) prefers Trx over GSH for recycling of the active-site peroxidatic Cys residue. Here, we compared spGpx1 and S. pombe Tpx1 (spTpx1) protein sequences with those of their respective homologs in Saccharomyces cerevisiae and humans. Our analysis revealed that like spTpx1, spGpx1 contains a pair of conserved Cys residues (Cys36 and Cys82). These two conserved Cys residues are named peroxidatic and resolving Cys residues, respectively, and are found only in GPxs and TPxs that prefer Trx as an electron donor. Our analysis suggested that Cys36 and Cys82 in spGpx1 are most likely to form a disulfide bond upon oxidation of Cys36. Molecular modelling predicted that a conformational change might be required for the formation of this disulfide bond. Evolutionary analysis suggested that fungal GPxs and TPxs are related by divergent evolution from a common ancestor. Our analyses support a prediction that while spGpx1 and spTpx1 are phylogenetically and functionally different, they evolved from a common ancestor and use a similar mechanism for recycling of the active-site peroxidatic Cys residue.

3.
Biology (Basel) ; 11(10)2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36290371

RESUMEN

Viral diseases of cultivated crops are often caused by virus spillover from wild plants. Tobacco (N. tabacum) is an important economic crop grown globally. The viral pathogens of tobacco are traditional major subjects in virology studies and key considerations in tobacco breeding practices. A positive-strand RNA virus, wild tomato mosaic virus (WTMV), belonging to the genus potyvirus in the family potyviridae was recently found to infect tobacco in China. In this study, diseased tobacco leaf samples were collected in the Henan Province of China during 2020-2021. Several samples from different locations were identified as WTMV positive. An infectious DNA clone was constructed based on one of the WTMV isolates. By using this clone, we found that WTMV from tobacco could establish infections on natural reservoir hosts, demonstrating a possible route of WTMV spillover and overwintering in the tobacco field. Furthermore, the WTMV infection was found to be accompanied by other tobacco viruses in the field. The co-inoculation experiments indicate the superinfection exclusion (SIE) between WTMV and other potyvirus species that infect tobacco. Overall, our work reveals novel aspects of WTMV evolution and infection in tobacco and provides an important tool for further studies of WTMV.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA