Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Am J Physiol Endocrinol Metab ; 300(3): E423-34, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20587749

RESUMEN

Obesity has been shown to create stress in the endoplasmic reticulum (ER), and that initiates the activation of the unfolded protein response (UPR). This has been reported to cause insulin resistance in selective tissues through activation of the inositol-requiring enzyme 1α (IRE1α)-c-Jun NH(2)-terminal kinase (JNK) pathway, which results in the phosphorylation of the insulin receptor substrate-1 (IRS-1) at an inhibitory site and blocks insulin receptor signaling. In this study, we report that the Src homology domain-containing adaptor protein Nck1, previously shown to modulate the UPR, is of functional importance in obesity-induced ER stress signaling and inhibition of insulin actions. We have examined obese Nck1(-/-) and Nck1(+/+) mice for glucose tolerance, insulin sensitivity, and signaling as well as for ER stress markers and IRS-1 phosphorylation at Ser(307). Our findings show that obese Nck1-deficient mice display improved glucose disposal accompanied by enhanced insulin signaling in liver. This correlates with attenuated IRE1α and JNK activation and IRS-1 phosphorylation at Ser(307) compared with obese wild-type mice. Consistent with our in vivo data, we report that downregulation of Nck1 using siRNA in HepG2 cells results in decreased thapsigargin-induced IRE1α activation and signaling and IRS-1 phosphorylation at Ser(307), whereas it markedly enhances insulin signaling. Overall, in liver and in cultured cells, we show that depletion of Nck1 attenuates the UPR signal and its inhibitory action on insulin signaling. Taken all together, our findings implicate Nck1 in regulating the UPR, which secondary to obesity impairs glucose homeostasis and insulin actions.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/fisiología , Retículo Endoplásmico/fisiología , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/fisiopatología , Insulina/fisiología , Hígado/fisiología , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Animales , Glucemia/metabolismo , Western Blotting , Glucógeno/biosíntesis , Células HEK293 , Homeostasis/fisiología , Humanos , Resistencia a la Insulina/genética , Resistencia a la Insulina/fisiología , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Ratones Obesos , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Respuesta de Proteína Desplegada/genética , Respuesta de Proteína Desplegada/fisiología
2.
Mol Metab ; 53: 101248, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33989778

RESUMEN

OBJECTIVE: ß-cell dedifferentiation has been revealed as a pathological mechanism underlying pancreatic dysfunction in diabetes. We previously showed that increased miR-7 levels trigger ß-cell dedifferentiation and diabetes. We used ß-cell-specific miR-7 overexpressing mice (Tg7) to test the hypothesis that loss of ß-cell identity triggered by miR-7 overexpression alters islet gene expression and islet microenvironment in diabetes. METHODS: We performed bulk and single-cell RNA sequencing (RNA-seq) in islets obtained from ß-cell-specific miR-7 overexpressing mice (Tg7). We carried out loss- and gain-of-function experiments in MIN6 and EndoC-bH1 cell lines. We analysed previously published mouse and human T2D data sets. RESULTS: Bulk RNA-seq revealed that ß-cell dedifferentiation is associated with the induction of genes associated with epithelial-to-mesenchymal transition (EMT) in prediabetic (2-week-old) and diabetic (12-week-old) Tg7 mice. Single-cell RNA-seq (scRNA-seq) indicated that this EMT signature is enriched specifically in ß-cells. These molecular changes are associated with a weakening of ß-cell: ß-cell contacts, increased extracellular matrix (ECM) deposition, and TGFß-dependent islet fibrosis. We found that the mesenchymal reprogramming of ß-cells is explained in part by the downregulation of Pdx1 and its inability to regulate a myriad of epithelial-specific genes expressed in ß-cells. Notable among genes transactivated by Pdx1 is Ovol2, which encodes a transcriptional repressor of the EMT transcription factor Zeb2. Following compromised ß-cell identity, the reduction in Pdx1 gene expression causes a decrease in Ovol2 protein, triggering mesenchymal reprogramming of ß-cells through the induction of Zeb2. We provided evidence that EMT signalling associated with the upregulation of Zeb2 expression is a molecular feature of islets in T2D subjects. CONCLUSIONS: Our study indicates that miR-7-mediated ß-cell dedifferentiation induces EMT signalling and a chronic response to tissue injury, which alters the islet microenvironment and predisposes to fibrosis. This research suggests that regulators of EMT signalling may represent novel therapeutic targets for treating ß-cell dysfunction and fibrosis in T2D.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Proteínas de Homeodominio/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/metabolismo , Animales , Células Cultivadas , Diabetes Mellitus Tipo 2/genética , Regulación hacia Abajo , Transición Epitelial-Mesenquimal/genética , Femenino , Células HEK293 , Proteínas de Homeodominio/genética , Humanos , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Análisis de Secuencia de ARN , Transactivadores/genética , Factores de Transcripción/genética , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/genética
3.
Sci Transl Med ; 13(623): eabi7964, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34878823

RESUMEN

Endoreplication, duplication of the nuclear genome without cell division, occurs in disease to drive morphologic growth, cell fate, and function. Despite its criticality, the metabolic underpinnings of disease-induced endoreplication and its link to morphologic growth are unknown. Heart disease is characterized by endoreplication preceding cardiac hypertrophy. We identify ATP synthase as a central control node and determinant of cardiac endoreplication and hypertrophy by rechanneling free mitochondrial ADP to methylenetetrahydrofolate dehydrogenase 1 L (MTHFD1L), a mitochondrial localized rate-limiting enzyme of formate and de novo nucleotide biosynthesis. Concomitant activation of the adenosine monophosphate­activated protein kinase (AMPK)­retinoblastoma protein (Rb)-E2F axis co-opts metabolic products of MTHFD1L function to support DNA endoreplication and pathologic growth. Gain- and loss-of-function studies in genetic and surgical mouse heart disease models and correlation in individuals confirm direct coupling of deregulated energetics with endoreplication and pathologic overgrowth. Together, we identify cardiometabolic endoreplication as a hitherto unknown mechanism dictating pathologic growth progression in the failing myocardium.


Asunto(s)
Endorreduplicación , Cardiopatías , Animales , Ciclo Celular , División Celular , Replicación del ADN , Ratones
4.
J Clin Invest ; 128(8): 3369-3381, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29864031

RESUMEN

Neuronatin (Nnat) is an imprinted gene implicated in human obesity and widely expressed in neuroendocrine and metabolic tissues in a hormone- and nutrient-sensitive manner. However, its molecular and cellular functions and precise role in organismal physiology remain only partly defined. Here we demonstrate that mice lacking Nnat globally or specifically in ß cells display impaired glucose-stimulated insulin secretion leading to defective glucose handling under conditions of nutrient excess. In contrast, we report no evidence for any feeding or body weight phenotypes in global Nnat-null mice. At the molecular level neuronatin augments insulin signal peptide cleavage by binding to the signal peptidase complex and facilitates translocation of the nascent preprohormone. Loss of neuronatin expression in ß cells therefore reduces insulin content and blunts glucose-stimulated insulin secretion. Nnat expression, in turn, is glucose-regulated. This mechanism therefore represents a novel site of nutrient-sensitive control of ß cell function and whole-animal glucose homeostasis. These data also suggest a potential wider role for Nnat in the regulation of metabolism through the modulation of peptide processing events.


Asunto(s)
Regulación de la Expresión Génica , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Insulina/biosíntesis , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Glucosa/genética , Glucosa/metabolismo , Insulina/genética , Células Secretoras de Insulina/citología , Proteínas de la Membrana/genética , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética
5.
FEBS J ; 274(22): 5865-75, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17944934

RESUMEN

Phosphorylation of the alpha-subunit of the eukaryotic initiation factor 2 (eIF2) on Ser51 is an early event associated with the down-regulation of protein synthesis at the level of translation and initiation of a transcriptional program. This constitutes a potent mechanism to overcome various stress conditions. In mammals, four eIF2alpha-kinases [PKR-like endoplasmic reticulum kinase (PERK), dsRNA-activated protein kinase (PKR), heme regulated inhibitor (HRI) and general control nonderepressible-2 (GCN2)], activated following specific stresses, have been shown to be involved in this process. In this article, we report that the ubiquitously expressed adaptor protein Nck, composed only of Src homology domains and classically implicated in cell signaling by activated plasma membrane receptor tyrosine kinases, modulates eIF2alpha-kinase-mediated eIF2alphaSer51 phosphorylation in a specific manner. Our results show that Nck not only prevents eIF2alpha phosphorylation upon PERK activation, as reported previously, but also reduces eIF2alpha phosphorylation in conditions leading to PKR and HRI activation. By contrast, the overexpression of Nck in mammalian cells fails to attenuate eIF2alphaSer51 phosphorylation in response to amino acid starvation, a stress well known to activate GCN2. This observation is further confirmed by showing that Nck fails to alter eIF2alphaSer51 phosphorylation in Saccharomyces cerevisiae, for which the sole eIF2alpha-kinase is Gcn2p. Our results suggest the existence of a novel mechanism that specifically modulates the phosphorylation of eIF2alpha on Ser51 under various stress conditions.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Factor 2 Eucariótico de Iniciación/metabolismo , Proteínas Oncogénicas/fisiología , Serina/metabolismo , eIF-2 Quinasa/metabolismo , Factor 2 Eucariótico de Iniciación/química , Células HeLa , Humanos , Fosforilación
6.
J Clin Invest ; 127(3): 1061-1074, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28218624

RESUMEN

MicroRNAs (miRNAs) are negative modulators of gene expression that fine-tune numerous biological processes. miRNA loss-of-function rarely results in highly penetrant phenotypes, but rather, influences cellular responses to physiologic and pathophysiologic stresses. Here, we have reported that a single member of the evolutionarily conserved miR-7 family, miR-7a2, is essential for normal pituitary development and hypothalamic-pituitary-gonadal (HPG) function in adulthood. Genetic deletion of mir-7a2 causes infertility, with low levels of gonadotropic and sex steroid hormones, small testes or ovaries, impaired spermatogenesis, and lack of ovulation in male and female mice, respectively. We found that miR-7a2 is highly expressed in the pituitary, where it suppresses golgi glycoprotein 1 (GLG1) expression and downstream bone morphogenetic protein 4 (BMP4) signaling and also reduces expression of the prostaglandin F2a receptor negative regulator (PTGFRN), an inhibitor of prostaglandin signaling and follicle-stimulating hormone (FSH) and luteinizing hormone (LH) secretion. Our results reveal that miR-7a2 critically regulates sexual maturation and reproductive function by interconnecting miR-7 genomic circuits that regulate FSH and LH synthesis and secretion through their effects on pituitary prostaglandin and BMP4 signaling.


Asunto(s)
Hipogonadismo/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Infertilidad/metabolismo , MicroARNs/metabolismo , Transducción de Señal , Animales , Proteína Morfogenética Ósea 4/genética , Proteína Morfogenética Ósea 4/metabolismo , Femenino , Hormona Folículo Estimulante/genética , Hormona Folículo Estimulante/metabolismo , Hormonas Esteroides Gonadales/genética , Hormonas Esteroides Gonadales/metabolismo , Hipogonadismo/genética , Infertilidad/genética , Hormona Luteinizante/genética , Hormona Luteinizante/metabolismo , Masculino , Ratones , Ratones Noqueados , MicroARNs/genética , Ovario/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/genética , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Sialoglicoproteínas/genética , Sialoglicoproteínas/metabolismo , Testículo/metabolismo
7.
Front Genet ; 7: 226, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28123396

RESUMEN

Pancreatic ß-cells regulate glucose metabolism by secreting insulin, which in turn stimulates the utilization or storage of the sugar by peripheral tissues. Insulin insufficiency and a prolonged period of insulin resistance are usually the core components of type 2 diabetes (T2D). Although, decreased insulin levels in T2D have long been attributed to a decrease in ß-cell function and/or mass, this model has recently been refined with the recognition that a loss of ß-cell "identity" and dedifferentiation also contribute to the decline in insulin production. MicroRNAs (miRNAs) are key regulatory molecules that display tissue-specific expression patterns and maintain the differentiated state of somatic cells. During the past few years, great strides have been made in understanding how miRNA circuits impact ß-cell identity. Here, we review current knowledge on the role of miRNAs in regulating the acquisition of the ß-cell fate during development and in maintaining mature ß-cell identity and function during stress situations such as obesity, pregnancy, aging, or diabetes. We also discuss how miRNA function could be harnessed to improve our ability to generate ß-cells for replacement therapy for T2D.

8.
J Mol Med (Berl) ; 93(10): 1159-69, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26013143

RESUMEN

UNLABELLED: MicroRNAs play a crucial role in the regulation of cell growth and differentiation. Mice with genetic deletion of miR-375 exhibit impaired glycemic control due to decreased ß-cell and increased α-cell mass and function. The relative importance of these processes for the overall phenotype of miR-375KO mice is unknown. Here, we show that mice overexpressing miR-375 exhibit normal ß-cell mass and function. Selective re-expression of miR-375 in ß-cells of miR-375KO mice normalizes both, α- and ß-cell phenotypes as well as glucose metabolism. Using this model, we also analyzed the contribution of ß-cells to the total plasma miR-375 levels. Only a small proportion (≈1 %) of circulating miR-375 originates from ß-cells. Furthermore, acute and profound ß-cell destruction is sufficient to detect elevations of miR-375 levels in the blood. These findings are supported by higher miR-375 levels in the circulation of type 1 diabetes (T1D) subjects but not mature onset diabetes of the young (MODY) and type 2 diabetes (T2D) patients. Together, our data support an essential role for miR-375 in the maintenance of ß-cell mass and provide in vivo evidence for release of miRNAs from pancreatic ß-cells. The small contribution of ß-cells to total plasma miR-375 levels make this miRNA an unlikely biomarker for ß-cell function but suggests a utility for the detection of acute ß-cell death for autoimmune diabetes. KEY MESSAGES: • Overexpression of miR-375 in ß-cells does not influence ß-cell mass and function. • Increased α-cell mass in miR-375KO arises secondarily to loss of miR-375 in ß-cells. • Only a small proportion of circulating miR-375 levels originates from ß-cells. • Acute ß-cell destruction results in measurable increases of miR-375 in the blood. Circulating miR-375 levels are not a biomarker for pancreatic ß-cell function.


Asunto(s)
Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 2/sangre , Células Secretoras de Insulina/metabolismo , MicroARNs/sangre , Adulto , Anciano , Animales , Biomarcadores/metabolismo , Glucemia/análisis , Femenino , Dosificación de Gen , Humanos , Insulina/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , MicroARNs/genética , MicroARNs/metabolismo , Persona de Mediana Edad , Adulto Joven
9.
Nat Med ; 21(6): 619-27, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25985365

RESUMEN

Pancreatic beta cell death is a hallmark of type 1 (T1D) and type 2 (T2D) diabetes, but the molecular mechanisms underlying this aspect of diabetic pathology are poorly understood. Here we report that expression of the microRNA (miR)-200 family is strongly induced in islets of diabetic mice and that beta cell-specific overexpression of miR-200 in mice is sufficient to induce beta cell apoptosis and lethal T2D. Conversely, mir-200 ablation in mice reduces beta cell apoptosis and ameliorates T2D. We show that miR-200 negatively regulates a conserved anti-apoptotic and stress-resistance network that includes the essential beta cell chaperone Dnajc3 (also known as p58IPK) and the caspase inhibitor Xiap. We also observed that mir-200 dosage positively controls activation of the tumor suppressor Trp53 and thereby creates a pro-apoptotic gene-expression signature found in islets of diabetic mice. Consequently, miR-200-induced T2D is suppressed by interfering with the signaling of Trp53 and Bax, a proapoptotic member of the B cell lymphoma 2 protein family. Our results reveal a crucial role for the miR-200 family in beta cell survival and the pathophysiology of diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Células Secretoras de Insulina/metabolismo , MicroARNs/genética , Animales , Apoptosis/genética , Supervivencia Celular/genética , Diabetes Mellitus Tipo 2/patología , Regulación de la Expresión Génica , Proteínas del Choque Térmico HSP40/biosíntesis , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/patología , Ratones , Ratones Endogámicos NOD , MicroARNs/metabolismo , Transducción de Señal , Proteína Inhibidora de la Apoptosis Ligada a X/biosíntesis
10.
Mol Biol Cell ; 25(5): 702-11, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24371088

RESUMEN

PERK, the PKR-like endoplasmic reticulum (ER) kinase, is an ER transmembrane serine/threonine protein kinase activated during ER stress. In this study, we provide evidence that the Src-homology domain-containing adaptor Nck1 negatively regulates PERK. We show that Nck directly binds to phosphorylated Y(561) in the PERK juxtamembrane domain through its SH2 domain. We demonstrate that mutation of Y(561) to a nonphosphorylatable residue (Y561F) promotes PERK activity, suggesting that PERK phosphorylation at Y(561) (pY(561)PERK) negatively regulates PERK. In agreement, we show that pY(561)PERK delays PERK activation and signaling during ER stress. Compatible with a role for PERK in pancreatic ß-cells, we provide strong evidence that Nck1 contributes to PERK regulation of pancreatic ß-cell proteostasis. In fact, we demonstrated that down-regulation of Nck1 in mouse insulinoma MIN6 cells results in faster dephosphorylation of pY(561)PERK, which correlates with enhanced PERK activation, increased insulin biosynthesis, and PERK-dependent increase in proinsulin content. Furthermore, we report that pancreatic islets in whole-body Nck1-knockout mice contain more insulin than control littermates. Together our data strongly suggest that Nck1 negatively regulates PERK by interacting with PERK and protecting PERK from being dephosphorylated at its inhibitory site pY(561) and in this way affects pancreatic ß-cell proinsulin biogenesis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Células Secretoras de Insulina/metabolismo , Proteínas Oncogénicas/fisiología , Proinsulina/biosíntesis , eIF-2 Quinasa/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Células COS , Línea Celular , Chlorocebus aethiops , Islotes Pancreáticos/metabolismo , Ratones , Ratones Noqueados , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Fosforilación , Proinsulina/metabolismo , eIF-2 Quinasa/metabolismo
11.
J Clin Invest ; 124(6): 2722-35, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24789908

RESUMEN

Dysfunctional microRNA (miRNA) networks contribute to inappropriate responses following pathological stress and are the underlying cause of several disease conditions. In pancreatic ß cells, miRNAs have been largely unstudied and little is known about how specific miRNAs regulate glucose-stimulated insulin secretion (GSIS) or impact the adaptation of ß cell function to metabolic stress. In this study, we determined that miR-7 is a negative regulator of GSIS in ß cells. Using Mir7a2 deficient mice, we revealed that miR-7a2 regulates ß cell function by directly regulating genes that control late stages of insulin granule fusion with the plasma membrane and ternary SNARE complex activity. Transgenic mice overexpressing miR-7a in ß cells developed diabetes due to impaired insulin secretion and ß cell dedifferentiation. Interestingly, perturbation of miR-7a expression in ß cells did not affect proliferation and apoptosis, indicating that miR-7 is dispensable for the maintenance of endocrine ß cell mass. Furthermore, we found that miR-7a levels are decreased in obese/diabetic mouse models and human islets from obese and moderately diabetic individuals with compensated ß cell function. Our results reveal an interconnecting miR-7 genomic circuit that regulates insulin granule exocytosis in pancreatic ß cells and support a role for miR-7 in the adaptation of pancreatic ß cell function in obesity and type 2 diabetes.


Asunto(s)
Células Secretoras de Insulina/fisiología , MicroARNs/genética , MicroARNs/fisiología , Animales , Desdiferenciación Celular , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Exocitosis , Humanos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Ratones Transgénicos , Obesidad/genética , Obesidad/metabolismo , Proteínas SNARE/metabolismo
13.
Int J Cell Biol ; 2012: 684684, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22496693

RESUMEN

Actin cytoskeleton remodeling is under the regulation of multiple proteins with various activities. Here, we demonstrate that the γ2 isoform of Casein Kinase I (CKIγ2) is part of a novel molecular path regulating the formation of actin stress fibers. We show that overexpression of CKIγ2 in fibroblasts alters cell morphology by impairing actin stress fibers formation. We demonstrate that this is concomitant with increased phosphorylation of the CDK inhibitor p27(Kip) and lower levels of activated RhoA, and is dependent on CKIγ2 catalytic activity. Moreover, we report that roscovitine, a potent inhibitor of cyclin-dependent kinases, including Cdk5, decreases p27(Kip) protein levels and restores actin stress fibers formation in CKIγ2 overexpressing cells, suggesting the existence of a CKIγ2-Cdk5-p27(Kip)-RhoA pathway in regulating actin remodeling. On the other hand, we also show that in a manner independent of its catalytic activity, CKIγ2 delays cell cycle progression through G1. Collectively our findings reveal that CKIγ2 is a novel player in the control of actin cytoskeleton dynamics and cell proliferation.

14.
J Biol Chem ; 281(36): 26633-44, 2006 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-16835242

RESUMEN

Stress imposed on the endoplasmic reticulum (ER) induces the phosphorylation of the alpha-subunit of the eukaryotic initiation factor 2 (eIF2) on Ser51. This results in transient inhibition of general translation initiation while concomitantly activating a signaling pathway that promotes the expression of genes whose products improve ER function. Conversely, dephosphorylation of eIF2alphaSer51 is accomplished by protein phosphatase 1 (PP1c) complexes containing either the protein CReP or GADD34, which target PP1c to eIF2. Here, we demonstrate that the Src homology (SH) domain-containing adaptor Nck is a key component of a molecular complex that controls eIF2alpha phosphorylation and signaling in response to ER stress. We show that overexpression of Nck decreases basal and ER stress-induced eIF2alpha phosphorylation and the attendant induction of ATF4 and CHOP. In contrast, we demonstrate that the mouse embryonic fibroblasts lacking both isoforms of Nck (Nck1-/-Nck2-/-) show higher levels of eIF2alpha phosphorylation and premature induction of ATF4, CHOP, and GADD34 in response to ER stress and finally, are more resistant to cell death induced by prolonged ER stress conditions. We establish that a significant amount of Nck protein localizes at the ER and is in a complex with eIF2 subunits. Further analysis of this complex revealed that it also contains the Ser/Thr phosphatase PP1c, its regulatory subunit CReP, and dephosphorylates eIF2alpha on Ser51 in vitro. Overall, we demonstrate that Nck as a component of the CReP/PP1c holophosphatase complex contributes to maintain eIF2alpha in a hypophosphorylated state. In this manner, Nck modulates translation and eIF2alpha signaling in response to ER stress.


Asunto(s)
Retículo Endoplásmico/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Proteínas Oncogénicas/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Subunidades de Proteína/metabolismo , Transducción de Señal/fisiología , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Antígenos de Diferenciación/genética , Antígenos de Diferenciación/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Supervivencia Celular , Células Cultivadas , Factor 2 Eucariótico de Iniciación/genética , Fibroblastos/citología , Fibroblastos/fisiología , Genes Reporteros , Células HeLa , Humanos , Ratones , Ratones Noqueados , Complejos Multiproteicos , Proteínas Oncogénicas/genética , Fosfoproteínas Fosfatasas/genética , Fosforilación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína Fosfatasa 1 , Subunidades de Proteína/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo
15.
Biochem Biophys Res Commun ; 349(1): 310-6, 2006 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-16934223

RESUMEN

Nephrin is a transmembrane molecule essential for morphology and function of kidney podocytes. We and others reported previously that the cytoplasmic domain of human and mouse nephrin interacts with the adaptor protein, Nck, in a tyrosine phosphorylation-dependent manner. In the current study, we characterized the interaction of rat nephrin with Nck and further addressed its impact on cell morphology. Rat nephrin expressed in Cos-1 cells co-immunoprecipitated with Nck in a manner dependent on the phosphorylation of Y1204 and Y1228. Nephrin from normal rat glomeruli was also tyrosine phosphorylated and associated with Nck. Overexpression of rat nephrin in HEK293T cells induced morphological changes resembling process formation, which became more distinct when the extracellular domain of nephrin was cross-linked by antibodies. The morphological changes were attenuated by expression of dominant negative constructs of Nck. In the rat model of podocyte injury and proteinuria, nephrin tyrosine phosphorylation and nephrin-Nck interaction were both reduced significantly. Taken together, we propose that Nck couples nephrin to the actin cytoskeleton in glomerular podocytes and contributes to the maintenance of normal morphology and function of podocytes.


Asunto(s)
Proteínas de la Membrana/biosíntesis , Proteínas Oncogénicas/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Células COS , Chlorocebus aethiops , Humanos , Riñón/metabolismo , Glomérulos Renales/metabolismo , Ratones , Nefrosis/patología , Proteínas Oncogénicas/metabolismo , Fosforilación , Podocitos/metabolismo , Unión Proteica , Ratas
16.
Proc Natl Acad Sci U S A ; 103(15): 5911-6, 2006 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-16595635

RESUMEN

The Fas ligand (FasL) is a key death factor of cytotoxic T lymphocytes and natural killer cells. It is stored intracellularly as a transmembrane protein of secretory lysosomes. Upon activation, these vesicles are transported to the cytotoxic immunological synapse (IS), and FasL becomes exposed to the cell surface to trigger cell death through ligation of its receptor Fas (CD95) on the target cell. We propose that the FasL-associated adaptor protein Nck is involved in the actin-dependent transport of FasL-bearing secretory lysosomes to the IS. Nck binds to the proline-rich portion of FasL and alters its subcellular distribution when coexpressed in 293T cells. In T lymphocytes, endogenous Nck partially colocalizes with lysosome-associated FasL. When T cell clones or lines are exposed to target cells, both proteins and other components of secretory lysosomes (i.e., granzyme B or cathepsin D) are transported to the cell-cell interface. The present data suggest that T cell receptor engagement provokes a rapid, tyrosine kinase- and actin-dependent transport of Nck-associated FasL-carrying lysosomes to the contact area. Our observations support the previous notion that the unique cytoplasmic tail of FasL is crucial for its directed transport to the cell surface and into the assembling cytotoxic IS.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/inmunología , Linfocitos T CD4-Positivos/inmunología , Lisosomas/inmunología , Glicoproteínas de Membrana/metabolismo , Proteínas Oncogénicas/metabolismo , Linfocitos T Citotóxicos/inmunología , Factores de Necrosis Tumoral/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Sitios de Unión , Línea Celular , Células Clonales , Citotoxicidad Inmunológica , Proteína Ligando Fas , Humanos , Unión Proteica , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/metabolismo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA