RESUMEN
Extension of the replicative lifespan of primary cells can be achieved by activating human telomerase reverse transcriptase (hTERT) to maintain sufficient telomere lengths. In this work, we utilize CRISPR/dCas9-based epigenetic modifiers (p300 histone acetyltransferase and TET1 DNA demethylase) and transcriptional activators (VPH and VPR) to reactivate the endogenous TERT gene in unstimulated T cells in the peripheral blood mononuclear cells (PBMCs) by rewiring the epigenetic marks of the TERT promoter. Importantly, we have successfully expanded resting T cells and delayed their cellular senescence for at least three months through TERT reactivation, without affecting the expression of a T-cell marker (CD3) or inducing an accelerated cell division rate. We have also demonstrated the effectiveness of these CRISPR tools in HEK293FT and THP-1-derived macrophages. TERT reactivation and replicative senescence delay were achieved without inducing malignancy transformation, as shown in various cellular senescence assays, cell cycle state, proliferation rate, cell viability, and karyotype analyses. Our chromatin immunoprecipitation (ChIP)-qPCR data together with TERT mRNA and protein expression analyses confirmed the specificity of CRISPR-based transcription activators in modulating epigenetic marks of the TERT promoter, and induced telomerase expression. Therefore, the strategy of cell immortalization described here can be potentially adopted and generalized to delay cell death or even immortalize any other cell types.
Asunto(s)
Sistemas CRISPR-Cas , Senescencia Celular , Epigénesis Genética , Regiones Promotoras Genéticas , Linfocitos T , Telomerasa , Humanos , Telomerasa/genética , Telomerasa/metabolismo , Sistemas CRISPR-Cas/genética , Senescencia Celular/genética , Regiones Promotoras Genéticas/genética , Linfocitos T/metabolismo , Linfocitos T/citología , Células HEK293 , Proliferación Celular/genéticaRESUMEN
Derivation of hypoimmunogenic human cells from genetically manipulated pluripotent stem cells holds great promise for future transplantation medicine and adoptive immunotherapy. Disruption of beta-2-microglobulin (B2M) in pluripotent stem cells followed by differentiation into specialized cell types is a promising approach to derive hypoimmunogenic cells. Given the attractive features of CRISPR/Cas9-based gene editing tool and baculoviral delivery system, baculovirus can deliver CRISPR/Cas9 components for site-specific gene editing of B2M. Herein, we report the development of a baculoviral CRISPR/Cas9 vector system for the B2M locus disruption in human cells. When tested in human embryonic stem cells (hESCs), the B2M gene knockdown/out was successfully achieved, leading to the stable down-regulation of human leukocyte antigen class I expression on the cell surface. Fibroblasts derived from the B2M gene-disrupted hESCs were then used as stimulator cells in the co-cultures with human peripheral blood mononuclear cells. These fibroblasts triggered significantly reduced alloimmune responses as assessed by sensitive Elispot assays. The B2M-negative hESCs maintained the pluripotency and the ability to differentiate into three germ lineages in vitro and in vivo. These findings demonstrated the feasibility of using the baculoviral-CRISPR/Cas9 system to establish B2M-disrupted pluripotent stem cells. B2M knockdown/out sufficiently leads to hypoimmunogenic conditions, thereby supporting the potential use of B2M-negative cells as universal donor cells for allogeneic cell therapy.
Asunto(s)
Baculoviridae , Sistemas CRISPR-Cas , Diferenciación Celular , Edición Génica , Vectores Genéticos , Células Madre Pluripotentes , Microglobulina beta-2 , Humanos , Microglobulina beta-2/genética , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Baculoviridae/genética , Edición Génica/métodos , Vectores Genéticos/genética , Diferenciación Celular/genética , Técnicas de Inactivación de Genes/métodos , Animales , Fibroblastos/metabolismo , Fibroblastos/citología , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/citología , RatonesRESUMEN
CRISPR-based diagnostics (CRISPR/Dx) have revolutionized the field of molecular diagnostics. It enables home self-test, field-deployable, and point-of-care testing (POCT). Despite the great potential of CRISPR/Dx in diagnoses of biologically complex diseases, preamplification of the template often is required for the sensitive detection of low-abundance nucleic acids. Various amplification-free CRISPR/Dx systems were recently developed to enhance signal detection at sufficient sensitivity. Broadly, these amplification-free CRISPR/Dx systems are classified into five groups depending on the signal enhancement strategies employed: CRISPR/Cas12a and/or CRISPR/Cas13a are integrated with: (1) other catalytic enzymes (Cas14a, Csm6, Argonaute, duplex-specific nuclease, nanozyme, or T7 exonuclease), (2) rational-designed oligonucleotides (multivalent aptamer, tetrahedral DNA framework, RNA G-quadruplexes, DNA roller machine, switchable-caged guide RNA, hybrid locked RNA/DNA probe, hybridized cascade probe, or "U" rich stem-loop RNA), (3) nanomaterials (nanophotonic structure, gold nanoparticle, micromotor, or microbeads), (4) electrochemical and piezoelectric plate biosensors (SERS nanoprobes, graphene field-effect transistor, redox probe, or primer exchange reaction), or (5) cutting-edge detection technology platforms (digital bioanalysis, droplet microfluidic, smartphone camera, or single nanoparticle counting). Herein, we critically discuss the advances, pitfalls and future perspectives for these amplification-free CRISPR/Dx systems in nucleic acids detection. The continued refinement of these CRISPR/Dx systems will pave the road for rapid, cost-effective, ultrasensitive, and ultraspecific on-site detection without resorting to target amplification, with the ultimate goal of establishing CRISPR/Dx as the paragon of diagnostics.
RESUMEN
The application of rapidly growing CRISPR toolboxes and methods has great potential to transform biomedical research. Here, we provide a snapshot of up-to-date CRISPR toolboxes, then critically discuss the promises and hurdles associated with CRISPR-based nuclear genome editing, epigenome editing, and mitochondrial editing. The technical challenges and key solutions to realize epigenome editing in vivo, in vivo base editing and prime editing, mitochondrial editing in complex tissues and animals, and CRISPR-associated transposases and integrases in targeted genomic integration of very large DNA payloads are discussed. Lastly, we discuss the latest situation of the CRISPR/Cas9 clinical trials and provide perspectives on CRISPR-based gene therapy. Apart from technical shortcomings, ethical and societal considerations for CRISPR applications in human therapeutics and research are extensively highlighted.
RESUMEN
The development of high-throughput methods has enabled the genome-wide identification of putative regulatory elements in a wide variety of mammalian cells at an unprecedented resolution. Extensive genomic studies have revealed the important role of regulatory elements and genetic variation therein in disease formation and risk. In most cases, there is only correlative evidence for the roles of these elements and non-coding changes within these elements in pathogenesis. With the advent of genome- and epigenome-editing tools based on the CRISPR technology, it is now possible to test the functional relevance of the regulatory elements and alterations on a genomic scale. Here, we review the various CRISPR-based strategies that have been developed to functionally validate the candidate regulatory elements in mammals as well as the non-coding genetic variants found to be associated with human disease. We also discuss how these synthetic biology tools have helped to elucidate the role of three-dimensional nuclear architecture and higher-order chromatin organization in shaping functional genome and controlling gene expression.
Asunto(s)
Sistemas CRISPR-Cas/genética , Cromatina/química , Regulación de la Expresión Génica , Mamíferos/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Animales , ADN Intergénico/genética , HumanosRESUMEN
The rapid advancement of CRISPR technology has enabled targeted epigenome editing and transcriptional modulation in the native chromatin context. However, only a few studies have reported the successful editing of the epigenome in adult animals in contrast to the rapidly growing number of in vivo genome editing over the past few years. In this review, we discuss the challenges facing in vivo epigenome editing and new strategies to overcome the huddles. The biggest challenge has been the difficulty in packaging dCas9 fusion proteins required for manipulation of epigenome into the adeno-associated virus (AAV) delivery vehicle. We review the strategies to address the AAV packaging issue, including small dCas9 orthologues, truncated dCas9 mutants, a split-dCas9 system, and potent truncated effector domains. We discuss the dCas9 conjugation strategies to recruit endogenous chromatin modifiers and remodelers to specific genomic loci, and recently developed methods to recruit multiple copies of the dCas9 fusion protein, or to simultaneous express multiple gRNAs for robust epigenome editing or synergistic transcriptional modulation. The use of Cre-inducible dCas9-expressing mice or a genetic cross between dCas9- and sgRNA-expressing flies has also helped overcome the transgene delivery issue. We provide perspective on how a combination use of these strategies can facilitate in vivo epigenome editing and transcriptional modulation.
Asunto(s)
Sistemas CRISPR-Cas , Epigénesis Genética , Epigenómica , Edición Génica , Transcripción Genética , Metilación de ADN , Humanos , Regiones Promotoras GenéticasRESUMEN
The recent advent of genome and epigenome editing technologies has provided a new paradigm in which the landscape of the human genome and epigenome can be precisely manipulated in their native context. Genome and epigenome editing technologies can be applied to many aspects of aging research and offer the potential to develop novel therapeutics against age-related diseases. Here, we discuss the latest technological advances in the CRISPR-based genome and epigenome editing toolbox, and provide insight into how these synthetic biology tools could facilitate aging research by establishing in vitro cell and in vivo animal models to dissect genetic and epigenetic mechanisms underlying aging and age-related diseases. We discuss recent developments in the field with the aims to precisely modulate gene expression and dynamic epigenetic landscapes in a spatial and temporal manner in cellular and animal models, by complementing the CRISPR-based editing capability with conditional genetic manipulation tools including chemically inducible expression systems, optogenetics, logic gate genetic circuits, tissue-specific promoters, and the serotype-specific adeno-associated virus. We also discuss how the combined use of genome and epigenome editing tools permits investigators to uncover novel molecular pathways involved in the pathophysiology and etiology conferred by risk variants associated with aging and aging-related disease. A better understanding of the genetic and epigenetic regulatory mechanisms underlying human aging and age-related disease will significantly contribute to the developments of new therapeutic interventions for extending health span and life span, ultimately improving the quality of life in the elderly populations.
Asunto(s)
Envejecimiento/genética , Edición Génica , Animales , Sistemas CRISPR-Cas , Epigénesis Genética , Epigenómica/tendencias , Edición Génica/tendencias , Ingeniería Genética/tendencias , Genoma Humano , Humanos , Investigación Biomédica Traslacional/tendenciasRESUMEN
Safety and reliability of transgene integration in human genome continue to pose challenges for stem cell-based gene therapy. Here, we report a baculovirus-transcription activator-like effector nuclease system for AAVS1 locus-directed homologous recombination in human induced pluripotent stem cells (iPSCs). This viral system, when optimized in human U87 cells, provided a targeted integration efficiency of 95.21% in incorporating a Neo-eGFP cassette and was able to mediate integration of DNA insert up to 13.5 kb. In iPSCs, targeted integration with persistent transgene expression was achieved without compromising genomic stability. The modified iPSCs continued to express stem cell pluripotency markers and maintained the ability to differentiate into three germ lineages in derived embryoid bodies. Using a baculovirus-Cre/LoxP system in the iPSCs, the Neo-eGFP cassette at the AAVS1 locus could be replaced by a Hygro-mCherry cassette, demonstrating the feasibility of cassette exchange. Moreover, as assessed by measuring γ-H2AX expression levels, genome toxicity associated with chromosomal double-strand breaks was not detectable after transduction with moderate doses of baculoviral vectors expressing transcription activator-like effector nucleases. Given high targeted integration efficiency, flexibility in transgene exchange and low genome toxicity, our baculoviral transduction-based approach offers great potential and attractive option for precise genetic manipulation in human pluripotent stem cells.
Asunto(s)
Baculoviridae/genética , Proteínas de Unión al ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Marcación de Gen/métodos , Células Madre Pluripotentes Inducidas/metabolismo , Transducción Genética , Transgenes , Línea Celular Tumoral , Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN/genética , Desoxirribonucleasas de Localización Especificada Tipo II/genética , Vectores Genéticos , Células HEK293 , Humanos , Integrasas/metabolismo , Mutación , Proteínas Recombinantes de Fusión/metabolismoRESUMEN
Physicochemical properties of nanoparticles, such as particle size, surface charge, and particle shape, have a significant impact on cell activities. However, the effects of surface functionalization of nanoparticles with small chemical groups on stem cell behavior and function remain understudied. Herein, we incorporated different chemical functional groups (amino, DETA, hydroxyl, phosphate, and sulfonate with charges of +9.5, + 21.7, -14.1, -25.6, and -37.7, respectively) to the surface of inorganic silica nanoparticles. To trace their effects on mesenchymal stem cells (MSCs) of rat bone marrow, these functionalized silica nanoparticles were used to encapsulate Rhodamine B fluorophore dye. We found that surface functionalization with positively charged and short-chain chemical groups facilitates cell internalization and retention of nanoparticles in MSCs. The endocytic pathway differed among functionalized nanoparticles when tested with ion-channel inhibitors. Negatively charged nanoparticles mainly use lysosomal exocytosis to exit cells, while positively charged nanoparticles can undergo endosomal escape to avoid scavenging. The cytotoxic profiles of these functionalized silica nanoparticles are still within acceptable limits and tolerable. They exerted subtle effects on the actin cytoskeleton and migration ability. Last, phosphate-functionalized nanoparticles upregulate osteogenesis-related genes and induce osteoblast-like morphology, implying that it can direct MSCs lineage specification for bone tissue engineering. Our study provides insights into the rational design of biomaterials for effective drug delivery and regenerative medicine.
Asunto(s)
Materiales Biocompatibles , Ensayo de Materiales , Células Madre Mesenquimatosas , Nanopartículas , Tamaño de la Partícula , Dióxido de Silicio , Propiedades de Superficie , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Dióxido de Silicio/química , Dióxido de Silicio/farmacología , Nanopartículas/química , Animales , Ratas , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Osteogénesis/efectos de los fármacosRESUMEN
To enable rapid and accurate point-of-care DNA detection, we have developed a single-step, amplification-free nucleic acid detection platform, a DNA substrate-mediated autocatalysis of CRISPR/Cas12a (DSAC). DSAC makes use of the trans-cleavage activity of Cas12a and target template-activated DNA substrate for dual signal amplifications. DSAC employs two distinct DNA substrate types: one that enhances signal amplification and the other that negatively modulates fluorescent signals. The positive inducer utilizes nicked- or loop-based DNA substrates to activate CRISPR/Cas12a, initiating trans-cleavage activity in a positive feedback loop, ultimately amplifying the fluorescent signals. The negative modulator, which involves competitor-based DNA substrates, competes with the probes for trans-cleaving, resulting in a signal decline in the presence of target DNA. These DNA substrate-based DSAC systems were adapted to fluorescence-based and paper-based lateral flow strip detection platforms. Our DSAC system accurately detected African swine fever virus (ASFV) in swine's blood samples at femtomolar sensitivity within 20 min. In contrast to the existing amplification-free CRISPR/Dx platforms, DSAC offers a cost-effective and straightforward detection method, requiring only the addition of a rationally designed DNA oligonucleotide. Notably, a common ASFV sequence-encoded DNA substrate can be directly applied to detect human nucleic acids through a dual crRNA targeting system. Consequently, our single-step DSAC system presents an alternative point-of-care diagnostic tool for the sensitive, accurate, and timely diagnosis of viral infections with potential applicability to human disease detection.
RESUMEN
Synthetic Notch (synNotch) receptors have enabled mammalian cells to sense extracellular ligands and respond by activating user-prescribed transcriptional programs. Based on the synNotch system, we describe a cell-based in vivo sensor for cancerous cell detection. We attempted to engineer synNotch-programmed macrophages to sense cancer cells via urinary analysis of human chorionic gonadotropin (HCGB5). Principally, when the synNotch receptors of macrophages bind to the ligands of cancer cells, Notch is activated and undergoes intramembrane proteolysis to release the transcriptional activator into the nucleus. The transcriptional activator targets and activates downstream gene expression, such as human chorionic gonadotropin (HCGB5) in macrophages. When HCGB5 is secreted extracellularly into urine, it can be detected with commercial HCGB5 colloidal gold test strips. As a proof of principle, we demonstrated the feasibility of synNotch-programmed macrophages in detecting breast cancer cells engineered with artificial EGFP ligands. We demonstrated that HCGB5 expression was only induced when the cancer cell expressing EGFP ligands is present; thereby, extracellular HCGB5 expression is directly proportional to the number of cancer cells. Further optimizations of the synNotch system can realize the ultimate goal of establishing cell-based in vivo sensors as the paragon of cancer diagnostics for point-of-care testing and home self-test.
RESUMEN
BACKGROUND: The AAVS1 locus is viewed as a 'safe harbor' for transgene insertion into human genome. In the present study, we report a new method for AAVS1 targeting in human-induced pluripotent stem cells (hiPSCs). METHODS: We have developed two baculoviral transduction systems: one to deliver zinc finger nuclease (ZFN) and a DNA donor template for site-specific gene insertion and another to mediate Cre recombinase-mediated cassette exchange system to replace the inserted transgene with a new transgene. RESULTS: Our ZFN system provided the targeted integration efficiency of a Neo-EGFP cassette of 93.8% in G418-selected, stable hiPSC colonies. Southern blotting analysis of 20 AASV1 targeted colonies revealed no random integration events. Among 24 colonies examined for mono- or biallelic AASV1 targeting, 25% of them were biallelically modified. The selected hiPSCs displayed persistent enhanced green fluorescent protein expression and continued the expression of stem cell pluripotency markers. The hiPSCs maintained the ability to differentiate into three germ lineages in derived embryoid bodies and transgene expression was retained in the differentiated cells. After pre-including the loxP-docking sites into the Neo-EGFP cassette, we demonstrated that a baculovirus-Cre/loxP system could be used to facilitate the replacement of the Neo-EGFP cassette with another transgene cassette at the AAVS1 locus. CONCLUSIONS: Given high targeting efficiency, stability in expression of inserted transgene and flexibility in transgene exchange, the approach reported in the present study holds potential for generating genetically-modified human pluripotent stem cells suitable for developmental biology research, drug development, regenerative medicine and gene therapy.
Asunto(s)
Baculoviridae/genética , Endonucleasas/genética , Expresión Génica , Vectores Genéticos/genética , Células Madre Pluripotentes Inducidas/metabolismo , Transgenes , Dedos de Zinc/genética , Endonucleasas/metabolismo , Orden Génico , Genes Reporteros , Sitios Genéticos , Recombinación Homóloga , Humanos , Mutagénesis InsercionalRESUMEN
Flap endonuclease 1 (FEN1) is an endonuclease that specially removes 5' single-stranded overhang of branched duplex DNA (5' flap). While FEN1 is essential in various DNA metabolism pathways for preventing the malignant transformation of cells, an unusual expression of FEN1 is often associated with tumor progression, making it a potential biomarker for cancer diagnosis and treatment. Here we report a multimodal detection of FEN1 activity based on CRISPR/Cas12a trans-cleavage of single-strand DNA oligonucleotides (ssDNA). A dumbbell DNA structure with a 5' flap was designed, which can be cleaved by the FEN1 and the dumbbell DNA is subsequently ligated by T4 DNA ligase. The resulting closed duplex DNA contains a specific protospacer adjacent motif (PAM) that activates trans-cleavage of ssDNA after binding to CRISPR/Cas12a-crRNA. The trans-cleavage is activated only once and is independent to length or sequence of the ssDNA, which allows efficient signal amplification and multimodal signals such as fluorescence or cleaved connection between magnetic microparticles (MMPs) and polystyrene microparticles (PMPs) that alters solution turbidity after magnetic separation. In addition, by loading the particle solution into a microfluidic chip, unconnected PMPs escaping from a magnetic separator are amassed at the particle dam, enabling a visible PMP accumulation length proportional to the FEN1 activity. This multimodal detection is selective to FEN1 and achieves a low limit of detection (LOD) with only 40 min of reaction time. Applying to cell lysates, higher FEN1 activity was detected in breast cancer cells, suggesting a great potential for cancer diagnosis.
Asunto(s)
Técnicas Biosensibles , Endonucleasas de ADN Solapado , Endonucleasas de ADN Solapado/genética , Endonucleasas de ADN Solapado/metabolismo , Oligonucleótidos , Sistemas CRISPR-Cas/genética , ADN de Cadena Simple , ADN/químicaRESUMEN
VP64 is the smallest transactivation domain that can be packaged together with the sgRNA into a single adeno-associated virus (AAV) vector. However, VP64-based CRISPRa often exerts modest activation to the target gene when only one sgRNA is used. Herein, we used PAM-flexible dual base editor-mediated mutagenesis and self-activation strategies to derive VP64 variants with gain-of-function mutations. First, we generated an HEK293FT transgenic clone to stably expressing pTK-CRISPRa-GFP. The sgRNA of CRISPRa was designed to target the TK promoter, thereby allowing self-activation of CRISPRa-GFP. Base editors were then used to randomly mutagenesis VP64 in this transgenic cell. VP64 with enhanced potency would translate into increment of GFP fluorescence intensity, thereby allowing positive selection of the desired VP64 mutants. This strategy has enabled us to identify several VP64 variants that are more potent than the wild-type VP64. ΔCRISPRa derived from these VP64 variants also efficiently activated the endogenous promoter of anti-aging and longevity genes (KLOTHO, SIRT6, and NFE2L2) in human cells. Since the overall size of these ΔCRISPRa transgenes is not increased, it remains feasible for all-in-one AAV applications. The strategies described here can facilitate high-throughput screening of the desired protein variants and adapted to evolve any other effector domains.
RESUMEN
Compared with siRNAs or other antisense oligonucleotides (ASOs), the chemical simplicity, DNA/RNA binding capability, folding ability of tertiary structure, and excellent physiological stability of threose nucleic acid (TNA) motivate scientists to explore it as a novel molecular tool in biomedical applications. Although ASOs reach the target cells/tumors, insufficient tissue penetration and distribution of ASOs result in poor therapeutic efficacy. Therefore, the study of the time course of drug absorption, biodistribution, metabolism, and excretion is of significantly importance. In this work, the pharmacokinetics and biosafety of TNAs in living organisms are investigated. We found that synthetic TNAs exhibited excellent biological stability, low cytotoxicity, and substantial uptake in living cells without transfection. Using U87 three-dimensional (3D) multicellular spheroids to mimic the in vivo tumor microenvironment, TNAs showed their ability to penetrate efficiently throughout the whole multicellular spheroid as a function of incubation time and concentration when the size of the spheroid is relatively small. Additionally, TNAs could be safely administrated into Balb/c mice and most of them distributed in the kidneys where they supposed to excrete from the body through the renal filtration system. We found that accumulation of TNAs in kidneys induced no pathological changes, and no acute structural and functional damage in renal systems. The favourable biocompatibility of TNA makes it attractive as a safe and effective nucleic acid-based therapeutic agent for practical biological applications.
RESUMEN
Single nucleotide polymorphisms (SNPs) at the adiponectin and resistin loci are strongly associated with hypoadiponectinemia and hyperresistinemia, which may eventually increase risk of insulin resistance, type 2 diabetes (T2DM), metabolic syndrome (MS), and cardiovascular disease. Real-time PCR was used to genotype SNPs of the adiponectin (SNP+45T>G, SNP+276G>T, SNP+639T>C, and SNP+1212A>G) and resistin (SNP-420C>G and SNP+299G>A) genes in 809 Malaysian men (208 controls, 174 MS without T2DM, 171 T2DM without MS, 256 T2DM with MS) whose ages ranged between 40 and 70 years old. The genotyping results for each SNP marker was verified by sequencing. The anthropometric clinical and metabolic parameters of subjects were recorded. None of these SNPs at the adiponectin and resistin loci were associated with T2DM and MS susceptibility in Malaysian men. SNP+45T>G, SNP+276G>T, and SNP+639T>C of the adiponectin gene did not influence circulating levels of adiponectin. However, the G-allele of SNP+1212A>G at the adiponectin locus was marginally associated (P= 0.0227) with reduced circulating adiponectin levels. SNP-420C>G (df = 2; F= 16.026; P= 1.50×10(-7) ) and SNP+299G>A (df = 2; F= 22.944; P= 2.04×10(-10) ) of the resistin gene were strongly associated with serum resistin levels. Thus, SNP-420C>G and SNP+299G>A of the resistin gene are strongly associated with the risk of hyperresistinemia in Malaysian men.
Asunto(s)
Adipoquinas/sangre , Adiponectina/genética , Diabetes Mellitus Tipo 2/genética , Síndrome Metabólico/genética , Polimorfismo Genético , Resistina/genética , Diabetes Mellitus Tipo 2/sangre , Predisposición Genética a la Enfermedad , Humanos , Malasia , Masculino , Síndrome Metabólico/sangreRESUMEN
BACKGROUND: Adiponectin and resistin are adipokines which modulate insulin action, energy, glucose and lipid homeostasis. Meta-analyses showed that hypoadiponectinemia and hyperresistinemia are strongly associated with increased risk of insulin resistance, type 2 diabetes (T2DM), metabolic syndrome (MS) and cardiovascular disease. The aim of this study was to propose a novel adiponectin-resistin (AR) index by taking into account both adiponectin and resistin levels to provide a better indicator of the metabolic homeostasis and metabolic disorders. In addition, a novel insulin resistance (IRAR) index was proposed by integration of the AR index into an existing insulin resistance index to provide an improved diagnostic biomarker of insulin sensitivity. METHODS: In this case control study, anthropometric clinical and metabolic parameters including fasting serum total adiponectin and resistin levels were determined in 809 Malaysian men (208 controls, 174 MS without T2DM, 171 T2DM without MS, 256 T2DM with MS) whose ages ranged between 40-70 years old. Significant differences in continuous variables among subject groups were confirmed by ANCOVA or MANCOVA test using 1,000 stratified bootstrap samples with bias corrected and accelerated (BCa) 95% CI. Spearman's rho rank correlation test was used to test the correlation between two variables. RESULTS: The AR index was formulated as 1+log10(R0)-log10(A0). The AR index was more strongly associated with increased risk of T2DM and MS than hypoadiponectinemia and hyperresistinemia alone. The AR index was more strongly correlated with the insulin resistance indexes and key metabolic endpoints of T2DM and MS than adiponectin and resistin levels alone. The AR index was also correlated with a higher number of MS components than adiponectin and resistin levels alone. The IRAR index was formulated as log10(I0G0)+log10(I0G0)log10(R0/A0). The normal reference range of the IRAR index for insulin sensitive individuals was between 3.265 and 3.538. The minimum cut-off values of the IRAR index for insulin resistance assessment were between 3.538 and 3.955. CONCLUSIONS: The novel AR and IRAR indexes are cost-effective, precise, reproducible and reliable integrated diagnostic biomarkers of insulin sensitivity for screening subjects with increased risk of future development of T2DM and MS.
Asunto(s)
Diabetes Mellitus Tipo 2/diagnóstico , Resistencia a la Insulina , Síndrome Metabólico/diagnóstico , Resistina/sangre , Adiponectina/sangre , Adulto , Anciano , Biomarcadores/sangre , Glucemia/metabolismo , Presión Sanguínea , Índice de Masa Corporal , Estudios de Casos y Controles , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/fisiopatología , Hemoglobina Glucada/análisis , Humanos , Insulina/sangre , Lípidos/sangre , Malasia , Masculino , Síndrome Metabólico/sangre , Síndrome Metabólico/fisiopatología , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Medición de Riesgo , Factores de Riesgo , Circunferencia de la Cintura , Relación Cintura-CaderaRESUMEN
Short circulation lifetime, poor blood-brain barrier (BBB) permeability and low targeting specificity limit nanovehicles from crossing the vascular barrier and reaching the tumor site. Consequently, the precise diagnosis of malignant brain tumors remains a great challenge. This study demonstrates the imaging of photostable biopolymer-coated nanodiamonds (NDs) with tumor targeting properties inside the brain. NDs are labeled with PEGylated denatured bovine serum albumin (BSA) and tumor vasculature targeting tripeptides RGD. The modified NDs show high colloidal stability in different buffer systems. Moreover, it is found that discrete dcBSA-PEG-NDs cross the in vitro BBB model more effectively than aggregated NDs. Importantly, compared with the non-targeting NDs, RGD-dcBSA-PEG-NDs can selectively target the tumor site in U-87 MG bearing mice after systemic injection. Overall, this discrete ND system enables efficacious brain tumor visualization with minimal toxicity to other major organs, and is worthy of further investigation into the applications as a unique platform for noninvasive theragnostics and/or thermometry at different stages of human diseases in the brain.
Asunto(s)
Neoplasias Encefálicas , Nanodiamantes , Animales , Transporte Biológico , Biopolímeros , Barrera Hematoencefálica , Neoplasias Encefálicas/diagnóstico por imagen , RatonesRESUMEN
The last few years have seen tremendous advances in CRISPR-mediated genome editing. Great efforts have been made to improve the efficiency, specificity, editing window, and targeting scope of CRISPR/Cas9-mediated transgene knock-in and gene correction. In this article, we comprehensively review recent progress in CRISPR-based strategies for targeted transgene knock-in and gene correction in both homology-dependent and homology-independent approaches. We cover homology-directed repair (HDR), synthesis-dependent strand annealing (SDSA), microhomology-mediated end joining (MMEJ), and homology-mediated end joining (HMEJ) pathways for a homology-dependent strategy and alternative DNA repair pathways such as non-homologous end joining (NHEJ), base excision repair (BER), and mismatch repair (MMR) for a homology-independent strategy. We also discuss base editing and prime editing that enable direct conversion of nucleotides in genomic DNA without damaging the DNA or requiring donor DNA. Notably, we illustrate the key mechanisms and design principles for each strategy, providing design guidelines for multiplex, flexible, scarless gene insertion and replacement at high efficiency and specificity. In addition, we highlight next-generation base editors that provide higher editing efficiency, fewer undesired by-products, and broader targeting scope.
RESUMEN
The development of biocompatible drug delivery vehicles for cancer therapy in the brain remains a big challenge. In this study, we designed self-assembled DNA nanocages functionalized with or without blood-brain barrier (BBB)-targeting ligands, d and we investigated their penetration across the BBB. Our DNA nanocages were not cytotoxic and they were substantially taken up in brain capillary endothelial cells and Uppsala 87 malignant glioma (U-87 MG) cells. We found that ligand modification is not essential for this DNA system as the ligand-free DNA nanocages (LF-NCs) could still cross the BBB by endocytosis inin vitro and in vivo models. Our spherical DNA nanocages were more permeable across the BBB compared with tubular DNA nanotubes. Remarkably, in vivo studies revealed that DNA nanocages could carry anticancer drugs across the BBB and inhibit the tumor growth in a U-87 MG xenograft mouse model. This is the first example showing the potential of DNA nanocages as innovative delivery vehicles to the brain for cancer therapy. Unlike other delivery systems, our work suggest that a DNA nanocage-based platform provides a safe and cost-effective tool for targeted delivery to the brain and therapy for brain tumors.