Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
RNA ; 29(4): 446-454, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36669889

RESUMEN

Splice-modulating antisense oligonucleotides (ASOs) offer treatment options for rare neurological diseases, including those with very rare mutations, where patient-specific, individualized ASOs have to be developed. Inspired by the development of milasen, the 1 Mutation 1 Medicine (1M1M) and Dutch Center for RNA Therapeutics (DCRT) aim to develop patient-specific ASOs and treat eligible patients within Europe and the Netherlands, respectively. Treatment will be provided under a named patient setting. Our initiatives benefited from regulatory advice from the European Medicines Agency (EMA) with regard to preclinical proof-of-concept studies, safety studies, compounding and measuring benefit and safety in treated patients. We here outline the most important considerations from these interactions and how we implemented this advice into our plan to develop and treat eligible patients within Europe.


Asunto(s)
Encefalopatías , Oligonucleótidos , Humanos , Oligonucleótidos/genética , Oligonucleótidos/uso terapéutico , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/uso terapéutico , Encéfalo , Europa (Continente) , Encefalopatías/tratamiento farmacológico
2.
Brain ; 144(2): 584-600, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33559681

RESUMEN

The extracellular matrix comprises a network of macromolecules such as collagens, proteoglycans and glycoproteins. VWA1 (von Willebrand factor A domain containing 1) encodes a component of the extracellular matrix that interacts with perlecan/collagen VI, appears to be involved in stabilizing extracellular matrix structures, and demonstrates high expression levels in tibial nerve. Vwa1-deficient mice manifest with abnormal peripheral nerve structure/function; however, VWA1 variants have not previously been associated with human disease. By interrogating the genome sequences of 74 180 individuals from the 100K Genomes Project in combination with international gene-matching efforts and targeted sequencing, we identified 17 individuals from 15 families with an autosomal-recessive, non-length dependent, hereditary motor neuropathy and rare biallelic variants in VWA1. A single disease-associated allele p.(G25Rfs*74), a 10-bp repeat expansion, was observed in 14/15 families and was homozygous in 10/15. Given an allele frequency in European populations approaching 1/1000, the seven unrelated homozygote individuals ascertained from the 100K Genomes Project represents a substantial enrichment above expected. Haplotype analysis identified a shared 220 kb region suggesting that this founder mutation arose >7000 years ago. A wide age-range of patients (6-83 years) helped delineate the clinical phenotype over time. The commonest disease presentation in the cohort was an early-onset (mean 2.0 ± 1.4 years) non-length-dependent axonal hereditary motor neuropathy, confirmed on electrophysiology, which will have to be differentiated from other predominantly or pure motor neuropathies and neuronopathies. Because of slow disease progression, ambulation was largely preserved. Neurophysiology, muscle histopathology, and muscle MRI findings typically revealed clear neurogenic changes with single isolated cases displaying additional myopathic process. We speculate that a few findings of myopathic changes might be secondary to chronic denervation rather than indicating an additional myopathic disease process. Duplex reverse transcription polymerase chain reaction and immunoblotting using patient fibroblasts revealed that the founder allele results in partial nonsense mediated decay and an absence of detectable protein. CRISPR and morpholino vwa1 modelling in zebrafish demonstrated reductions in motor neuron axonal growth, synaptic formation in the skeletal muscles and locomotive behaviour. In summary, we estimate that biallelic variants in VWA1 may be responsible for up to 1% of unexplained hereditary motor neuropathy cases in Europeans. The detailed clinical characterization provided here will facilitate targeted testing on suitable patient cohorts. This novel disease gene may have previously evaded detection because of high GC content, consequential low coverage and computational difficulties associated with robustly detecting repeat-expansions. Reviewing previously unsolved exomes using lower QC filters may generate further diagnoses.


Asunto(s)
Proteínas de la Matriz Extracelular/genética , Neuropatía Hereditaria Motora y Sensorial/genética , Adulto , Anciano , Animales , Conducta Animal/fisiología , Niño , Femenino , Neuropatía Hereditaria Motora y Sensorial/patología , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/patología , Mutación , Linaje , Adulto Joven , Pez Cebra
3.
Eur J Neurosci ; 51(11): 2219-2235, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31919899

RESUMEN

Germline mutations in the basic helix-loop-helix transcription factor 4 (TCF4) cause the Pitt-Hopkins syndrome (PTHS), a developmental disorder with severe intellectual disability. Here, we report findings from a new mouse model with a central nervous system-specific truncation of Tcf4 leading to severe phenotypic abnormalities. Furthermore, it allows the study of a complete TCF4 knockout in adult mice, circumventing early postnatal lethality of previously published mouse models. Our data suggest that a TCF4 truncation results in an impaired hippocampal architecture affecting both the dentate gyrus as well as the cornu ammonis. In the cerebral cortex, loss of TCF4 generates a severe differentiation delay of neural precursors. Furthermore, neuronal morphology was critically affected with shortened apical dendrites and significantly increased branching of dendrites. Our data provide novel information about the role of Tcf4 in brain development and may help to understand the mechanisms leading to intellectual deficits observed in patients suffering from PTHS.


Asunto(s)
Hiperventilación , Discapacidad Intelectual , Factor de Transcripción 4 , Animales , Facies , Hipocampo , Humanos , Discapacidad Intelectual/genética , Ratones , Neuronas , Factor de Transcripción 4/genética
4.
Acta Neuropathol ; 137(4): 657-673, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30830316

RESUMEN

The TCF4 gene encodes for the basic helix-loop-helix transcription factor 4 (TCF4), which plays an important role in the development of the central nervous system (CNS). Haploinsufficiency of TCF4 was found to cause Pitt-Hopkins syndrome (PTHS), a severe neurodevelopmental disorder. Recently, the screening of a large cohort of medulloblastoma (MB), a highly aggressive embryonal brain tumor, revealed almost 20% of adult patients with MB of the Sonic hedgehog (SHH) subtype carrying somatic TCF4 mutations. Interestingly, many of these mutations have previously been detected as germline mutations in patients with PTHS. We show here that overexpression of wild-type TCF4 in vitro significantly suppresses cell proliferation in MB cells, whereas mutant TCF4 proteins do not to the same extent. Furthermore, RNA sequencing revealed significant upregulation of multiple well-known tumor suppressors upon expression of wild-type TCF4. In vivo, a prenatal knockout of Tcf4 in mice caused a significant increase in apoptosis accompanied by a decreased proliferation and failed migration of cerebellar granule neuron precursor cells (CGNP), which are thought to be the cells of origin for SHH MB. In contrast, postnatal in vitro and in vivo knockouts of Tcf4 with and without an additional constitutive activation of the SHH pathway led to significantly increased proliferation of CGNP or MB cells. Finally, publicly available data from human MB show that relatively low expression levels of TCF4 significantly correlate with a worse clinical outcome. These results not only point to time-specific roles of Tcf4 during cerebellar development but also suggest a functional linkage between TCF4 mutations and the formation of SHH MB, proposing that TCF4 acts as a tumor suppressor during postnatal stages of cerebellar development.


Asunto(s)
Proteínas Hedgehog/genética , Meduloblastoma/genética , Mutación , Factor de Transcripción 4/genética , Animales , Apoptosis/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Facies , Proteínas Hedgehog/metabolismo , Humanos , Hiperventilación/genética , Hiperventilación/metabolismo , Hiperventilación/patología , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/patología , Meduloblastoma/metabolismo , Meduloblastoma/patología , Ratones , Ratones Noqueados , Factor de Transcripción 4/metabolismo
5.
Commun Med (Lond) ; 4(1): 6, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38182878

RESUMEN

Antisense oligonucleotides (ASOs) are incredibly versatile molecules that can be designed to specifically target and modify RNA transcripts to slow down or halt rare genetic disease progression. They offer the potential to target groups of patients or can be tailored for individual cases. Nonetheless, not all genetic variants and disorders are amenable to ASO-based treatments, and hence, it is important to consider several factors before embarking on the drug development journey. Here, we discuss which genetic disorders have the potential to benefit from a specific type of ASO approach, based on the pathophysiology of the disease and pathogenic variant type, as well as those disorders that might not be suitable for ASO therapies. We further explore additional aspects, such as the target tissues, intervention time points, and potential clinical benefits, which need to be considered before developing a compound. Overall, we provide an overview of the current potentials and limitations of ASO-based therapeutics for the treatment of monogenic disorders.

6.
Med Genet ; 33(3): 261-267, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38835702

RESUMEN

Neuromuscular disorders are a heterogeneous group of diseases ranging from mild to devastating phenotypes depending on the disorder's origin. Pathophysiologies for many of these disorders are not fully understood and efficient therapies are urgently needed. Recent advances in the field of induced pluripotent stem cells and organ-on-a-chip technologies have brought enormous improvement in modeling neuromuscular diseases. Even complex units, like the neuromuscular junction, can now be built, enabling researchers to study each component of the motor unit by itself or interacting with others, allowing the identification of disease mechanisms. This article aims to introduce these new modeling systems to study neuromuscular disorders and the possibilities of organ-on-a-chip platforms to shed light on disease pathologies and their use for therapy development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA