Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Int J Mol Sci ; 23(5)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35269851

RESUMEN

The chloroplast protein CP12 is involved in the dark/light regulation of the Calvin-Benson-Bassham cycle, in particular, in the dark inhibition of two enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK), but other functions related to stress have been proposed. We knocked out the unique CP12 gene to prevent its expression in Chlamydomonas reinhardtii (ΔCP12). The growth rates of both wild-type and ΔCP12 cells were nearly identical, as was the GAPDH protein abundance and activity in both cell lines. On the contrary, the abundance of PRK and its specific activity were significantly reduced in ΔCP12, as revealed by relative quantitative proteomics. Isolated PRK lost irreversibly its activity over-time in vitro, which was prevented in the presence of recombinant CP12 in a redox-independent manner. We have identified amino acid residues in the CP12 protein that are required for this new function preserving PRK activity. Numerous proteins involved in redox homeostasis and stress responses were more abundant and the expressions of various metabolic pathways were also increased or decreased in the absence of CP12. These results highlight CP12 as a moonlighting protein with additional functions beyond its well-known regulatory role in carbon metabolism.


Asunto(s)
Chlamydomonas reinhardtii , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fotosíntesis/genética
2.
Cell Commun Signal ; 19(1): 38, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33761918

RESUMEN

BACKGROUND: CP12 is a small chloroplast protein that is widespread in various photosynthetic organisms and is an actor of the redox signaling pathway involved in the regulation of the Calvin Benson Bassham (CBB) cycle. The gene encoding this protein is conserved in many diatoms, but the protein has been overlooked in these organisms, despite their ecological importance and their complex and still enigmatic evolutionary background. METHODS: A combination of biochemical, bioinformatics and biophysical methods including electrospray ionization-mass spectrometry, circular dichroism, nuclear magnetic resonance spectroscopy and small X ray scattering, was used to characterize a diatom CP12. RESULTS: Here, we demonstrate that CP12 is expressed in the marine diatom Thalassiosira pseudonana constitutively in dark-treated and in continuous light-treated cells as well as in all growth phases. This CP12 similarly to its homologues in other species has some features of intrinsically disorder protein family: it behaves abnormally under gel electrophoresis and size exclusion chromatography, has a high net charge and a bias amino acid composition. By contrast, unlike other known CP12 proteins that are monomers, this protein is a dimer as suggested by native electrospray ionization-mass spectrometry and small angle X-ray scattering. In addition, small angle X-ray scattering revealed that this CP12 is an elongated cylinder with kinks. Circular dichroism spectra indicated that CP12 has a high content of α-helices, and nuclear magnetic resonance spectroscopy suggested that these helices are unstable and dynamic within a millisecond timescale. Together with in silico predictions, these results suggest that T. pseudonana CP12 has both coiled coil and disordered regions. CONCLUSIONS: These findings bring new insights into the large family of dynamic proteins containing disordered regions, thus increasing the diversity of known CP12 proteins. As it is a protein that is more abundant in many stresses, it is not devoted to one metabolism and in particular, it is not specific to carbon metabolism. This raises questions about the role of this protein in addition to the well-established regulation of the CBB cycle. Choregraphy of metabolism by CP12 proteins in Viridiplantae and Heterokonta. While the monomeric CP12 in Viridiplantae is involved in carbon assimilation, regulating phosphoribulokinase (PRK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) through the formation of a ternary complex, in Heterokonta studied so far, the dimeric CP12 is associated with Ferredoxin-NADP reductase (FNR) and GAPDH. The Viridiplantae CP12 can bind metal ions and can be a chaperone, the Heterokonta CP12 is more abundant in all stresses (C, N, Si, P limited conditions) and is not specific to a metabolism. Video Abstract.


Asunto(s)
Organismos Acuáticos/metabolismo , Proteínas de Cloroplastos/metabolismo , Diatomeas/metabolismo , Secuencia de Aminoácidos , Proteínas de Cloroplastos/química , Simulación por Computador , Espectroscopía de Resonancia Magnética , Multimerización de Proteína , Estructura Secundaria de Proteína , Dispersión del Ángulo Pequeño , Difracción de Rayos X
3.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34445427

RESUMEN

Carbonic anhydrases (CAs) are a family of ubiquitous enzymes that catalyze the interconversion of CO2 and HCO3-. The "iota" class (ι-CA) was first found in the marine diatom Thalassiosira pseudonana (tpι-CA) and is widespread among photosynthetic microalgae and prokaryotes. The ι-CA has a domain COG4875 (or COG4337) that can be repeated from one to several times and resembles a calcium-calmodulin protein kinase II association domain (CaMKII-AD). The crystal structure of this domain in the ι-CA from a cyanobacterium and a chlorarachniophyte has been recently determined. However, the three-dimensional organization of the four domain-containing tpι-CA is unknown. Using biophysical techniques and 3-D modeling, we show that the homotetrameric tpι-CA in solution has a flat "drone-like" shape with a core formed by the association of the first two domains of each monomer, and four protruding arms formed by domains 3 and 4. We also observe that the short linker between domains 3 and 4 in each monomer confers high flexibility, allowing for different conformations to be adopted. We propose the possible 3-D structure of a truncated tpι-CA containing fewer domain repeats using experimental data and discuss the implications of this atypical shape on the activity and metal coordination of the ι-CA.


Asunto(s)
Anhidrasas Carbónicas/química , Diatomeas/enzimología , Cristalografía por Rayos X , Diatomeas/química , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Fotosíntesis , Dominios Proteicos , Espectrometría de Masa por Ionización de Electrospray , Ultracentrifugación
4.
J Biol Chem ; 294(35): 13171-13185, 2019 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-31315928

RESUMEN

Implicated in numerous human diseases, intrinsically disordered proteins (IDPs) are dynamic ensembles of interconverting conformers that often contain many proline residues. Whether and how proline conformation regulates the functional aspects of IDPs remains an open question, however. Here, we studied the disordered domain 2 of nonstructural protein 5A (NS5A-D2) of hepatitis C virus (HCV). NS5A-D2 comprises a short structural motif (PW-turn) embedded in a proline-rich sequence, whose interaction with the human prolyl isomerase cyclophilin A (CypA) is essential for viral RNA replication. Using NMR, we show here that the PW-turn motif exists in a conformational equilibrium between folded and disordered states. We found that the fraction of conformers in the NS5A-D2 ensemble that adopt the structured motif is allosterically modulated both by the cis/trans isomerization of the surrounding prolines that are CypA substrates and by substitutions conferring resistance to cyclophilin inhibitor. Moreover, we noted that this fraction is directly correlated with HCV RNA replication efficiency. We conclude that CypA can fine-tune the dynamic ensemble of the disordered NS5A-D2, thereby regulating viral RNA replication efficiency.


Asunto(s)
Ciclofilina A/metabolismo , ARN Viral/metabolismo , Proteínas no Estructurales Virales/metabolismo , Regulación Alostérica , Ciclofilina A/genética , Ciclofilina A/aislamiento & purificación , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , ARN Viral/química , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/aislamiento & purificación , Replicación Viral
5.
Arch Biochem Biophys ; 672: 108070, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31408624

RESUMEN

Intrinsically disordered proteins (IDPs) are proteins that provide many functional advantages in a large number of metabolic and signalling pathways. Because of their high flexibility that endows them with pressure-, heat- and acid-resistance, IDPs are valuable metabolic regulators that help algae to cope with extreme conditions of pH, temperature, pressure and light. They have, however, been overlooked in these organisms. In this review, we present some well-known algal IDPs, including the conditionally disordered CP12, a protein involved in the regulation of CO2 assimilation, as probably the best known example, whose disorder content is strongly dependent on the redox conditions, and the essential pyrenoid component 1 that serves as a scaffold for ribulose-1, 5-bisphosphate carboxylase/oxygenase. We also describe how some enzymes are regulated by protein regions, called intrinsically disordered regions (IDRs), such as ribulose-1, 5-bisphosphate carboxylase/oxygenase activase, the A2B2 form of glyceraldehyde-3-phosphate dehydrogenase and the adenylate kinase. Several molecular chaperones, which are crucial for cell proteostasis, also display significant disorder propensities such as the algal heat shock proteins HSP33, HSP70 and HSP90. This review confirms the wide distribution of IDPs in algae but highlights that further studies are needed to uncover their full role in orchestrating algal metabolism.


Asunto(s)
Proteínas Algáceas/metabolismo , Chlorophyta/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas Algáceas/química , Chlorophyta/química , Proteínas Intrínsecamente Desordenadas/química , Microalgas/química , Microalgas/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Fotosíntesis/fisiología
6.
J Biol Chem ; 292(44): 18024-18043, 2017 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-28912275

RESUMEN

Non-structural protein 5B (NS5B) is the RNA-dependent RNA polymerase that catalyzes replication of the hepatitis C virus (HCV) RNA genome and therefore is central for its life cycle. NS5B interacts with the intrinsically disordered domain 2 of NS5A (NS5A-D2), another essential multifunctional HCV protein that is required for RNA replication. As a result, these two proteins represent important targets for anti-HCV chemotherapies. Despite this importance and the existence of NS5B crystal structures, our understanding of the conformational and dynamic behavior of NS5B in solution and its relationship with NS5A-D2 remains incomplete. To address these points, we report the first detailed NMR spectroscopic study of HCV NS5B lacking its membrane anchor (NS5BΔ21). Analysis of constructs with selective isotope labeling of the δ1 methyl groups of isoleucine side chains demonstrates that, in solution, NS5BΔ21 is highly dynamic but predominantly adopts a closed conformation. The addition of NS5A-D2 leads to spectral changes indicative of binding to both allosteric thumb sites I and II of NS5BΔ21 and induces long-range perturbations that affect the RNA-binding properties of the polymerase. We compared these modifications with the short- and long-range effects triggered in NS5BΔ21 upon binding of filibuvir, an allosteric inhibitor. We demonstrate that filibuvir-bound NS5BΔ21 is strongly impaired in the binding of both NS5A-D2 and RNA. NS5A-D2 induces conformational and functional perturbations in NS5B similar to those triggered by filibuvir. Thus, our work highlights NS5A-D2 as an allosteric regulator of the HCV polymerase and provides new insight into the dynamics of NS5B in solution.


Asunto(s)
Hepacivirus/enzimología , Modelos Moleculares , Oligorribonucleótidos/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas no Estructurales Virales/metabolismo , Regulación Alostérica/efectos de los fármacos , Sitio Alostérico/efectos de los fármacos , Antivirales/química , Antivirales/metabolismo , Antivirales/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Eliminación de Gen , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Isoleucina/química , Mutagénesis Sitio-Dirigida , Resonancia Magnética Nuclear Biomolecular , Oligorribonucleótidos/química , Fragmentos de Péptidos/antagonistas & inhibidores , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Mutación Puntual , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Replegamiento Proteico/efectos de los fármacos , Pironas/química , Pironas/metabolismo , Pironas/farmacología , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Solubilidad , Triazoles/química , Triazoles/metabolismo , Triazoles/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética
7.
J Biol Chem ; 290(31): 19104-20, 2015 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-26085105

RESUMEN

Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) and its interaction with the human chaperone cyclophilin A are both targets for highly potent and promising antiviral drugs that are in the late stages of clinical development. Despite its high interest in regards to the development of drugs to counteract the worldwide HCV burden, NS5A is still an enigmatic multifunctional protein poorly characterized at the molecular level. NS5A is required for HCV RNA replication and is involved in viral particle formation and regulation of host pathways. Thus far, no enzymatic activity or precise molecular function has been ascribed to NS5A that is composed of a highly structured domain 1 (D1), as well as two intrinsically disordered domains 2 (D2) and 3 (D3), representing half of the protein. Here, we identify a short structural motif in the disordered NS5A-D2 and report its NMR structure. We show that this structural motif, a minimal Pro(314)-Trp(316) turn, is essential for HCV RNA replication, and its disruption alters the subcellular distribution of NS5A. We demonstrate that this Pro-Trp turn is required for proper interaction with the host cyclophilin A and influences its peptidyl-prolyl cis/trans isomerase activity on residue Pro(314) of NS5A-D2. This work provides a molecular basis for further understanding of the function of the intrinsically disordered domain 2 of HCV NS5A protein. In addition, our work highlights how very small structural motifs present in intrinsically disordered proteins can exert a specific function.


Asunto(s)
Hepacivirus/enzimología , ARN Viral/biosíntesis , Proteínas no Estructurales Virales/química , Secuencias de Aminoácidos , Ciclofilina A/química , Humanos , Proteínas Intrínsecamente Desordenadas/química , Modelos Moleculares , Mutación Missense , Resonancia Magnética Nuclear Biomolecular , Prolina/química , ARN Viral/genética , Triptófano/química , Proteínas no Estructurales Virales/genética , Replicación Viral
8.
Biochem Biophys Res Commun ; 477(1): 20-26, 2016 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-27268235

RESUMEN

The redox switch protein CP12 is a key player of the regulation of the Benson-Calvin cycle. Its oxidation state is controlled by the formation/dissociation of two intramolecular disulphide bridges during the day/night cycle. CP12 was known to be globally intrinsically disordered on a large scale in its reduced state, while being partly ordered in the oxidised state. By combining Nuclear Magnetic Resonance and Small Angle X-ray Scattering experiments, we showed that, contrary to secondary structure or disorder predictions, reduced CP12 is fully disordered, with no transient or local residual structure likely to be precursor of the structures identified in the oxidised active state and/or in the bound state with GAPDH or PRK. These results highlight the diversity of the mechanisms of regulation of conditionally disordered redox switches, and question the stability of oxidised CP12 scaffold.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Resonancia Magnética Nuclear Biomolecular , Oxidación-Reducción , Conformación Proteica , Dispersión del Ángulo Pequeño , Difracción de Rayos X
9.
Biochem J ; 462(2): 373-84, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24825021

RESUMEN

MBF1 (multi-protein bridging factor 1) is a protein containing a conserved HTH (helix-turn-helix) domain in both eukaryotes and archaea. Eukaryotic MBF1 has been reported to function as a transcriptional co-activator that physically bridges transcription regulators with the core transcription initiation machinery of RNA polymerase II. In addition, MBF1 has been found to be associated with polyadenylated mRNA in yeast as well as in mammalian cells. aMBF1 (archaeal MBF1) is very well conserved among most archaeal lineages; however, its function has so far remained elusive. To address this, we have conducted a molecular characterization of this aMBF1. Affinity purification of interacting proteins indicates that aMBF1 binds to ribosomal subunits. On sucrose density gradients, aMBF1 co-fractionates with free 30S ribosomal subunits as well as with 70S ribosomes engaged in translation. Binding of aMBF1 to ribosomes does not inhibit translation. Using NMR spectroscopy, we show that aMBF1 contains a long intrinsically disordered linker connecting the predicted N-terminal zinc-ribbon domain with the C-terminal HTH domain. The HTH domain, which is conserved in all archaeal and eukaryotic MBF1 homologues, is directly involved in the association of aMBF1 with ribosomes. The disordered linker of the ribosome-bound aMBF1 provides the N-terminal domain with high flexibility in the aMBF1-ribosome complex. Overall, our findings suggest a role for aMBF1 in the archaeal translation process.


Asunto(s)
Proteínas Arqueales/metabolismo , Subunidades Ribosómicas Pequeñas de Archaea/metabolismo , Sulfolobus solfataricus/metabolismo , Transactivadores/metabolismo , Secuencias de Aminoácidos , Proteínas Arqueales/química , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Subunidades Ribosómicas Pequeñas de Archaea/química , Transactivadores/química
10.
Chem Phys Lipids ; 258: 105361, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37981224

RESUMEN

The use of Nuclear Magnetic Resonance spectroscopy for studying lipid digestion in vitro most often consists of quantifying lipolysis products after they have been extracted from the reaction medium using organic solvents. However, the current sensitivity level of NMR spectrometers makes possible to avoid the extraction step and continuously quantify the lipids directly in the reaction medium. We used real-time 1H NMR spectroscopy and guinea pig pancreatic lipase-related protein 2 (GPLRP2) as biocatalyst to monitor in situ the lipolysis of monogalactosyl diacylglycerol (MGDG) in the form of mixed micelles with the bile salt sodium taurodeoxycholate (NaTDC). Residual substrate and lipolysis products (monogalactosyl monoacylglycerol (MGMG); monogalactosylglycerol (MGG) and octanoic acid (OA) were simultaneously quantified throughout the reaction thanks to specific proton resonances. Lipolysis was complete with the release of all MGDG fatty acids. These results were confirmed by thin layer chromatography (TLC) and densitometry after lipid extraction at different reaction times. Using diffusion-ordered NMR spectroscopy (DOSY), we could also estimate the diffusion coefficients of all the reaction compounds and deduce the hydrodynamic radius of the lipid aggregates in which they were present. It was shown that MGDG-NaTDC mixed micelles with an initial hydrodynamic radius rH of 7.3 ± 0.5 nm were changed into smaller micelles of NaTDC-MGDG-MGMG of 2.3 ± 0.5 nm in the course of the lipolysis reaction, and finally into NaTDC-OA mixed micelles (rH of 2.9 ± 0.5 nm) and water soluble MGG. These results provide a better understanding of the digestion of galactolipids by PLRP2, a process that leads to the complete micellar solubilisation of their fatty acids and renders their intestinal absorption possible.


Asunto(s)
Galactolípidos , Micelas , Animales , Cobayas , Hidrólisis , Galactolípidos/química , Galactolípidos/metabolismo , Ácidos y Sales Biliares , Lipólisis , Ácidos Grasos/metabolismo , Espectroscopía de Resonancia Magnética , Digestión
11.
J Inorg Biochem ; 254: 112503, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38364337

RESUMEN

Anthropogenic activities in agriculture and health use the antimicrobial properties of copper. This has led to copper accumulation in the environment and contributed to the emergence of copper resistant microorganisms. Understanding bacterial copper homeostasis diversity is therefore highly relevant since it could provide valuable targets for novel antimicrobial treatments. The periplasmic CopI protein is a monodomain cupredoxin comprising several copper binding sites and is directly involved in copper resistance in bacteria. However, its structure and mechanism of action are yet to be determined. To study the different binding sites for cupric and cuprous ions and to understand their possible interactions, we have used mutants of the putative copper binding modules of CopI and spectroscopic methods to characterize their properties. We show that CopI is able to bind a cuprous ion in its central histidine/methionine-rich region and oxidize it thanks to its cupredoxin center. The resulting cupric ion can bind to a third site at the N-terminus of the protein. Nuclear magnetic resonance spectroscopy revealed that the central histidine/methionine-rich region exhibits a dynamic behavior and interacts with the cupredoxin binding region. CopI is therefore likely to participate in copper resistance by detoxifying the cuprous ions from the periplasm.


Asunto(s)
Antiinfecciosos , Azurina , Cobre , Cobre/química , Histidina/química , Sitios de Unión , Metionina , Iones
12.
J Biol Chem ; 287(53): 44249-60, 2012 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-23152499

RESUMEN

Nonstructural protein 5B (NS5B) is essential for hepatitis C virus (HCV) replication as it carries the viral RNA-dependent RNA polymerase enzymatic activity. HCV replication occurs in a membrane-associated multiprotein complex in which HCV NS5A and host cyclophilin A (CypA) have been shown to be present together with the viral polymerase. We used NMR spectroscopy to perform a per residue level characterization of the molecular interactions between the unfolded domains 2 and 3 of NS5A (NS5A-D2 and NS5A-D3), CypA, and NS5B(Δ21). We show that three regions of NS5A-D2 (residues 250-262 (region A), 274-287 (region B), and 306-333 (region C)) interact with NS5B(Δ21), whereas NS5A-D3 does not. We show that both NS5B(Δ21) and CypA share a common binding site on NS5A that contains residues Pro-306 to Glu-323. No direct molecular interaction has been detected by NMR spectroscopy between HCV NS5B(Δ21) and host CypA. We show that cyclosporine A added to a sample containing NS5B(Δ21), NS5A-D2, and CypA specifically inhibits the interaction between CypA and NS5A-D2 without altering the one between NS5A-D2 and NS5B(Δ21). A high quality heteronuclear NMR spectrum of HCV NS5B(Δ21) has been obtained and was used to characterize the binding site on the polymerase of NS5A-D2. Moreover these data highlight the potential of using NMR of NS5B(Δ21) as a powerful tool to characterize in solution the interactions of the HCV polymerase with all kinds of molecules (proteins, inhibitors, RNA). This work brings new insights into the comprehension of the molecular interplay between NS5B, NS5A, and CypA, three essentials proteins for HCV replication.


Asunto(s)
Ciclofilina A/metabolismo , Hepacivirus/enzimología , Hepatitis C/metabolismo , Proteínas no Estructurales Virales/metabolismo , Sitios de Unión , Línea Celular , Ciclofilina A/química , Ciclofilina A/genética , Hepacivirus/química , Hepacivirus/genética , Hepatitis C/genética , Hepatitis C/virología , Humanos , Unión Proteica , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética
13.
J Biomol NMR ; 55(4): 323-37, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23456038

RESUMEN

The Pin1 protein plays a critical role in the functional regulation of the hyperphosphorylated neuronal Tau protein in Alzheimer's disease and is by itself regulated by phosphorylation. We have used Nuclear Magnetic Resonance (NMR) spectroscopy to both identify the PKA phosphorylation site in the Pin1 WW domain and investigate the functional consequences of this phosphorylation. Detection and identification of phosphorylation on serine/threonine residues in a globular protein, while mostly occurring in solvent-exposed flexible loops, does not lead to chemical shift changes as obvious as in disordered proteins and hence does not necessarily shift the resonances outside the spectrum of the folded protein. Other complications were encountered to characterize the extent of the phosphorylation, as part of the (1)H,(15)N amide resonances around the phosphorylation site are specifically broadened in the unphosphorylated state. Despite these obstacles, NMR spectroscopy was an efficient tool to confirm phosphorylation on S16 of the WW domain and to quantify the level of phosphorylation. Based on this analytical characterization, we show that WW phosphorylation on S16 abolishes its binding capacity to a phosphorylated Tau peptide. A reduced conformational heterogeneity and flexibility of the phospho-binding loop upon S16 phosphorylation could account for part of the decreased affinity for its phosphorylated partner. Additionally, a structural model of the phospho-WW obtained by molecular dynamics simulation and energy minimization suggests that the phosphate moiety of phospho-S16 could compete with the phospho-substrate.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Isomerasa de Peptidilprolil/química , Isomerasa de Peptidilprolil/metabolismo , Sitios de Unión , Peptidilprolil Isomerasa de Interacción con NIMA , Fosforilación , Unión Proteica , Pliegue de Proteína
14.
FEBS Lett ; 597(23): 2853-2878, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37827572

RESUMEN

Carbon acquisition, assimilation and storage in eukaryotic microalgae and cyanobacteria occur in multiple compartments that have been characterised by the location of the enzymes involved in these functions. These compartments can be delimited by bilayer membranes, such as the chloroplast, the lumen, the peroxisome, the mitochondria or monolayer membranes, such as lipid droplets or plastoglobules. They can also originate from liquid-liquid phase separation such as the pyrenoid. Multiple exchanges exist between the intracellular microcompartments, and these are reviewed for the CO2 concentration mechanism, the Calvin-Benson-Bassham cycle, the lipid metabolism and the cellular energetic balance. Progress in microscopy and spectroscopic methods opens new perspectives to characterise the molecular consequences of the location of the proteins involved, including intrinsically disordered proteins.


Asunto(s)
Chlamydomonas reinhardtii , Microalgas , Microalgas/metabolismo , Carbono/metabolismo , Fotosíntesis , Cloroplastos/metabolismo , Dióxido de Carbono/metabolismo
15.
Chem Phys Lipids ; 252: 105291, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36918051

RESUMEN

Galactolipids are the main lipids from plant photosynthetic membranes and they can be digested by pancreatic lipase related protein 2 (PLRP2), an enzyme found in the pancreatic secretion in many animal species. Here, we used transmission Fourier-transform infrared spectroscopy (FTIR) to monitor continuously the hydrolysis of galactolipids by PLRP2, in situ and in real time. The method was first developed with a model substrate, a synthetic monogalactosyl diacylglycerol with 8-carbon acyl chains (C8-MGDG), in the form of mixed micelles with a bile salt, sodium taurodeoxycholate (NaTDC). The concentrations of the residual substrate and reaction products (monogalactosylmonoglyceride, MGMG; monogalactosylglycerol, MGG; octanoic acid) were estimated from the carbonyl and carboxylate vibration bands after calibration with reference standards. The results were confirmed by thin layer chromatography analysis (TLC) and specific staining of galactosylated compounds with thymol and sulfuric acid. The method was then applied to the lipolysis of more complex substrates, a natural extract of MGDG with long acyl chains, micellized with NaTDC, and intact chloroplasts isolated from spinach leaves. After a calibration performed with α-linolenic acid, the main fatty acid (FA) found in plant galactolipids, FTIR allowed quantitative measurement of chloroplast lipolysis by PLRP2. A full release of FA from membrane galactolipids was observed, that was not dependent on the presence of bile salts. Nevertheless, the evolution of amide vibration band in FTIR spectra suggested the interaction of membrane proteins with NaTDC and lipolysis products.


Asunto(s)
Galactolípidos , Micelas , Animales , Galactolípidos/química , Galactolípidos/metabolismo , Spinacia oleracea/química , Spinacia oleracea/metabolismo , Ácidos Grasos/metabolismo , Espectrofotometría Infrarroja , Cloroplastos/metabolismo , Digestión
16.
Mol Microbiol ; 80(1): 102-16, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21276096

RESUMEN

Virulent phages of the Siphoviridae family are responsible for milk fermentation failures worldwide. Here, we report the characterization of the product of the early expressed gene orf35 from Lactococcus lactis phage p2 (936 group). ORF35(p2), also named Sak3, is involved in the sensitivity of phage p2 to the antiviral abortive infection mechanism AbiK. The localization of its gene upstream of a gene coding for a single-strand binding protein as well as its membership to a superfamily of single-strand annealing proteins (SSAPs) suggested a possible role in homologous recombination. Electron microscopy showed that purified ORF35(p2) form a hexameric ring-like structure that is often found in proteins with a conserved RecA nucleotide-binding core. Gel shift assays and surface plasmon resonance data demonstrated that ORF35(p2) interacts preferentially with single-stranded DNA with nanomolar affinity. Atomic force microscopy showed also that it preferentially binds to sticky DNA substrates over blunt ends. In addition, in vitro assays demonstrated that ORF35(p2) is able to anneal complementary strands. Sak3 also stimulates Escherichia coli RecA-mediated homologous recombination. Remarkably, Sak3 was shown to possess an ATPase activity that is required for RecA stimulation. Collectively, our results demonstrate that ORF35(p2) is a novel SSAP stimulating homologous recombination.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Bacteriófago P2/enzimología , Bacteriófago P2/genética , Recombinación Genética/genética , Proteínas Virales/metabolismo , Adenosina Trifosfatasas/genética , Proteínas Bacterianas/genética , Microscopía de Fuerza Atómica , Sistemas de Lectura Abierta/genética , Proteínas Virales/genética
17.
Proc Natl Acad Sci U S A ; 106(52): 22239-44, 2009 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-20018739

RESUMEN

The means by which a polypeptide chain acquires its unique 3-D structure is a fundamental question in biology. During its synthesis on the ribosome, a nascent chain (NC) emerges vectorially and will begin to fold in a cotranslational fashion. The complex environment of the cell, coupled with the gradual emergence of the ribosome-tethered NC during its synthesis, imposes conformational restraints on its folding landscape that differ from those placed on an isolated protein when stimulated to fold following denaturation in solution. To begin to examine cotranslational folding as it would occur within a cell, we produce highly selective, isotopically labeled NCs bound to isotopically silent ribosomes in vivo. We then apply NMR spectroscopy to study, at a residue specific level, the conformation of NCs consisting of different fractional lengths of the polypeptide chain corresponding to a given protein. This combined approach provides a powerful means of generating a series of snapshots of the folding of the NC as it emerges from the ribosome. Application of this strategy to the NMR analysis of the progressive synthesis of an Ig-like domain reveals the existence of a partially folded ribosome-bound species that is likely to represent an intermediate species populated during the cotranslational folding process.


Asunto(s)
Péptidos/química , Biosíntesis de Proteínas/fisiología , Ribosomas/metabolismo , Proteínas Portadoras/biosíntesis , Proteínas Portadoras/química , Proteínas Portadoras/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Vectores Genéticos , Proteínas de Microfilamentos/biosíntesis , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/genética , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Fragmentos de Péptidos/biosíntesis , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Plásmidos/genética , Pliegue de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
18.
Biomolecules ; 12(8)2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-36008940

RESUMEN

The chloroplast protein CP12, which is widespread in photosynthetic organisms, belongs to the intrinsically disordered proteins family. This small protein (80 amino acid residues long) presents a bias in its composition; it is enriched in charged amino acids, has a small number of hydrophobic residues, and has a high proportion of disorder-promoting residues. More precisely, CP12 is a conditionally disordered proteins (CDP) dependent upon the redox state of its four cysteine residues. During the day, reducing conditions prevail in the chloroplast, and CP12 is fully disordered. Under oxidizing conditions (night), its cysteine residues form two disulfide bridges that confer some stability to some structural elements. Like many CDPs, CP12 plays key roles, and its redox-dependent conditional disorder is important for the main function of CP12: the dark/light regulation of the Calvin-Benson-Bassham (CBB) cycle responsible for CO2 assimilation. Oxidized CP12 binds to glyceraldehyde-3-phosphate dehydrogenase and phosphoribulokinase and thereby inhibits their activity. However, recent studies reveal that CP12 may have other functions beyond the CBB cycle regulation. In this review, we report the discovery of this protein, its features as a disordered protein, and the many functions this small protein can have.


Asunto(s)
Cloroplastos , Cisteína , Proteínas de Cloroplastos/química , Cloroplastos/metabolismo , Cisteína/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/química , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Fotosíntesis/fisiología
19.
J Bacteriol ; 193(11): 2861-7, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21478358

RESUMEN

HflX GTPases are found in all three domains of life, the Bacteria, Archaea, and Eukarya. HflX from Escherichia coli has been shown to bind to the 50S ribosomal subunit in a nucleotide-dependent manner, and this interaction strongly stimulates its GTPase activity. We recently determined the structure of an HflX ortholog from the archaeon Sulfolobus solfataricus (SsoHflX). It revealed the presence of a novel HflX domain that might function in RNA binding and is linked to a canonical G domain. This domain arrangement is common to all archaeal, bacterial, and eukaryotic HflX GTPases. This paper shows that the archaeal SsoHflX, like its bacterial orthologs, binds to the 50S ribosomal subunit. This interaction does not depend on the presence of guanine nucleotides. The HflX domain is sufficient for ribosome interaction. Binding appears to be restricted to free 50S ribosomal subunits and does not occur with 70S ribosomes engaged in translation. The fingerprint (1)H-(15)N heteronuclear correlation nuclear magnetic resonance (NMR) spectrum of SsoHflX reveals a large number of well-resolved resonances that are broadened upon binding to the 50S ribosomal subunit. The GTPase activity of SsoHflX is stimulated by crude fractions of 50S ribosomal subunits, but this effect is lost with further high-salt purification of the 50S ribosomal subunits, suggesting that the stimulation depends on an extrinsic factor bound to the 50S ribosomal subunit. Our results reveal common properties but also marked differences between archaeal and bacterial HflX proteins.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Nucleótidos/metabolismo , Subunidades Ribosómicas Grandes de Archaea/metabolismo , Sulfolobus solfataricus/enzimología , Espectroscopía de Resonancia Magnética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas
20.
Chemistry ; 17(32): 8922-8, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21695740

RESUMEN

Butadiene and methanol were telomerised in the presence of palladium catalysts with ligands containing 8-diphenylphosphinochromane-like substituents at phosphorus. MonoXantphos and monoSPANphos afforded the most active, stable and selective catalysts known to date under commercially relevant production conditions for 1-methoxyocta-2,7-diene, the precursor to oct-1-ene.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA