Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Chemistry ; 30(12): e202302731, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38227358

RESUMEN

The Zr-based Metal Organic Framework (MOF) UiO-66(Zr) is widely employed owing to its good thermal and chemical stabilities. Although the long-range structure of this MOF is preserved in the presence of water during several days, little is known about the formation of defects, which cannot be detected using diffraction techniques. We apply here 17 O solid-state NMR spectroscopy at 18.8 T to investigate the reactivity of UiO-66, through the exchange of oxygen atoms between the different sites of the MOF and water. For that purpose, we have selectively enriched in 17 O isotope the carboxylate groups of UiO-66(Zr) by using it with 17 O-labeled terephthalic acid prepared using mechanochemistry. In the presence of water at 50 °C and a following dehydration at 150 °C, we observe an overall exchange of O atoms between COO- and µ3 -O2- sites. Furthermore, we demonstrate that the three distinct oxygen sites, µ3 -OH, µ3 -O2- and COO- , of UiO-66(Zr) MOF can be enriched in 17 O isotope by post-synthetic hydrothermal treatment in the presence of 17 O-enriched water. These results demonstrate the lability of Zr-O bonds and the reactivity of UiO-66(Zr) with water.

2.
Inorg Chem ; 63(22): 10179-10193, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38729620

RESUMEN

Oxalate ligands are found in many classes of materials, including energy storage materials and biominerals. Determining their local environments at the atomic scale is thus paramount to establishing the structure and properties of numerous phases. Here, we show that high-resolution 17O solid-state NMR is a valuable asset for investigating the structure of crystalline oxalate systems. First, an efficient 17O-enrichment procedure of oxalate ligands is demonstrated using mechanochemistry. Then, 17O-enriched oxalates were used for the synthesis of the biologically relevant calcium oxalate monohydrate (COM) phase, enabling the analysis of its structure and heat-induced phase transitions by high-resolution 17O NMR. Studies of the low-temperature COM form (LT-COM), using magnetic fields from 9.4 to 35.2 T, as well as 13C-17O MQ/D-RINEPT and 17O{1H} MQ/REDOR experiments, enabled the 8 inequivalent oxygen sites of the oxalates to be resolved, and tentatively assigned. The structural changes upon heat treatment of COM were also followed by high-resolution 17O NMR, providing new insight into the structures of the high-temperature form (HT-COM) and anhydrous calcium oxalate α-phase (α-COA), including the presence of structural disorder in the latter case. Overall, this work highlights the ease associated with 17O-enrichment of oxalate oxygens, and how it enables high-resolution solid-state NMR, for "NMR crystallography" investigations.

3.
Chemistry ; 29(10): e202203014, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36333272

RESUMEN

17 O NMR spectroscopy is a powerful technique, which can provide unique information regarding the structure and reactivity of biomolecules. However, the low natural abundance of 17 O (0.04 %) generally requires working with enriched samples, which are not easily accessible. Here, we present simple, fast and cost-efficient 17 O-enrichment strategies for amino acids and peptides by using mechanochemistry. First, five unprotected amino acids were enriched under ambient conditions, consuming only microliter amounts of costly labeled water, and producing pure molecules with enrichment levels up to ∼40 %, yields ∼60-85 %, and no loss of optical purity. Subsequently, 17 O-enriched Fmoc/tBu-protected amino acids were produced on a 1 g/day scale with high enrichment levels. Lastly, a site-selective 17 O-labeling of carboxylic functions in peptide side-chains was achieved for RGD and GRGDS peptides, with ∼28 % enrichment level. For all molecules, 17 O ssNMR spectra were recorded at 14.1 T in reasonable times, making this an important step forward for future NMR studies of biomolecules.


Asunto(s)
Aminoácidos , Péptidos , Aminoácidos/química , Péptidos/química , Aminas , Espectroscopía de Resonancia Magnética , Marcaje Isotópico/métodos
4.
Faraday Discuss ; 241(0): 250-265, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36134444

RESUMEN

The possibility of enriching in 17O the water molecules within hydrated biominerals belonging to the Ca-pyrophosphate family was investigated, using liquid assisted grinding (LAG) in the presence of 17O-labelled water. Two phases with different hydration levels, namely triclinic calcium pyrophosphate dihydrate (Ca2P2O7·2H2O, denoted t-CPPD) and monoclinic calcium pyrophosphate tetrahydrate (Ca2P2O7·4H2O, denoted m-CPPT ß) were enriched in 17O using a "post-enrichment" strategy, in which the non-labelled precursors were ground under gentle milling conditions in the presence of stoichiometric quantities of 17O-enriched water (introduced here in very small volumes ∼10 µL). Using high-resolution 17O solid-state NMR (ssNMR) analyses at multiple magnetic fields, and dynamic nuclear polarisation (DNP)-enhanced 17O NMR, it was possible to show that the labelled water molecules are mainly located at the core of the crystal structures, but that they can enter the lattice in different ways, namely by dissolution/recrystallisation or by diffusion. Overall, this work sheds light on the importance of high-resolution 17O NMR to help decipher the different roles that water can play as a liquid-assisted grinding agent and as a reagent for 17O-isotopic enrichment.


Asunto(s)
Pirofosfato de Calcio , Difosfatos , Cristalización , Pirofosfato de Calcio/química , Agua/química
5.
Phys Chem Chem Phys ; 25(35): 23435-23447, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37655593

RESUMEN

While ball-milling is becoming one of the common tools used by synthetic chemists, an increasing number of studies highlight that it is possible to further expand the nature and number of products which can be synthesized, by heating the reaction media during mechanochemical reactions. Hence, developing set-ups enabling heating and milling to be combined is an important target, which has been looked into in both academic and industrial laboratories. Here, we report a new approach for heating up reaction media during ball-milling reactions, using induction heating (referred to as i-BM). Our set-up is attractive not only because it enables a very fast heating of the milling medium (reaching ≈80 °C in just 15 s), and that it is directly adaptable to commercially-available milling equipment, but also because it enables heating either the walls of the milling jars or the beads themselves, depending on the choice of the materials which compose them. Importantly, the possibility to heat a milling medium "from the inside" (when using for example a PMMA jar and stainless steel beads) is a unique feature compared to previously proposed systems. Through numerical simulations, we then show that it is possible to finely tune the properties of this heating system (e.g. heating rate and maximum temperature reached), by playing with the characteristics of the milling system and/or the induction heating conditions used. Lastly, examples of applications of i-BM are given, showing how it can be used to help elucidate reaction mechanisms in ball-milling, to synthesize new molecules, and to control the physical nature of milling media.

6.
Chemistry ; 27(49): 12574-12588, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34131984

RESUMEN

In recent years, there has been increasing interest in developing cost-efficient, fast, and user-friendly 17 O enrichment protocols to help to understand the structure and reactivity of materials by using 17 O NMR spectroscopy. Here, we show for the first time how ball milling (BM) can be used to selectively and efficiently enrich the surface of fumed silica, which is widely used at industrial scale. Short milling times (up to 15 min) allowed modulation of the enrichment level (up to ca. 5 %) without significantly changing the nature of the material. High-precision 17 O compositions were measured at different milling times by using large-geometry secondary-ion mass spectrometry (LG-SIMS). High-resolution 17 O NMR analyses (including at 35.2 T) allowed clear identification of the signals from siloxane (Si-O-Si) and silanols (Si-OH), while DNP analyses, performed by using direct 17 O polarization and indirect 17 O{1 H} CP excitation, agreed with selective labeling of the surface. Information on the distribution of Si-OH environments at the surface was obtained from 2D 1 H-17 O D-HMQC correlations. Finally, the surface-labeled silica was reacted with titania and using 17 O DNP, their common interface was probed and Si-O-Ti bonds identified.

7.
Inorg Chem ; 60(18): 14310-14317, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34472850

RESUMEN

The reaction between P2-type honeycomb layered oxides Na2Ni2TeO6 and K2Ni2TeO6 enables the formation of NaKNi2TeO6. The compound is characterized by X-ray diffraction and 23Na solid-state nuclear magnetic resonance spectroscopy, and the structure is discussed through density functional theory calculations. In addition to the honeycomb Ni/Te cationic ordering, NaKNi2TeO6 exhibits a unique example of alternation of sodium and potassium layers instead of a random alkali-mixed occupancy. Stacking fault simulations underline the impact of the successive position of the Ni/Te honeycomb layers and validate the presence of multiple stacking sequences within the powder material, in proportions that evolve with the synthesis conditions. In a broader context, this work contributes to a better understanding of the alkali-mixed layered compounds.

8.
Magn Reson Chem ; 59(9-10): 1048-1061, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33729624

RESUMEN

43 Ca nuclear magnetic resonance (NMR) spectroscopy has been extensively applied to the detailed study of octacalcium phosphate (OCP), Ca8 (HPO4 )2 (PO4 )4 .5H2 O, and hybrid derivatives involving intercalated metabolic acids (viz., citrate, succinate, formate, and adipate). Such phases are of importance in the development of a better understanding of bone structure. High-resolution 43 Ca magic angle spinning (MAS) experiments, including double-rotation (DOR) 43 Ca NMR, as well as 43 Ca{1 H} rotational echo DOR (REDOR) and 31 P{43 Ca} REAPDOR NMR spectra, were recorded on a 43 Ca-labeled OCP phase at very high magnetic field (20 T), and complemented by ab initio calculations of NMR parameters using the Gauge-Including Projector Augmented Wave-density functional theory (GIPAW-DFT) method. This enabled a partial assignment of the eight inequivalent Ca2+ sites of OCP. Natural-abundance 43 Ca MAS NMR spectra were then recorded for the hybrid organic-inorganic derivatives, revealing changes in the 43 Ca lineshape. In the case of the citrate derivative, these could be interpreted on the basis of computational models of the structure. Overall, this study highlights the advantages of combining high-resolution 43 Ca NMR experiments and computational modeling for studying complex hybrid biomaterials.

9.
Magn Reson Chem ; 59(9-10): 975-990, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33615550

RESUMEN

Oxygen-17 and deuterium are two quadrupolar nuclei that are of interest for studying the structure and dynamics of materials by solid-state nuclear magnetic resonance (NMR). Here, 17 O and 2 H NMR analyses of crystalline ibuprofen and terephthalic acid are reported. First, improved 17 O-labelling protocols of these molecules are described using mechanochemistry. Then, dynamics occurring around the carboxylic groups of ibuprofen are studied considering variable temperature 17 O and 2 H NMR data, as well as computational modelling (including molecular dynamics simulations). More specifically, motions related to the concerted double proton jump and the 180° flip of the H-bonded (-COOH)2 unit in the crystal structure were looked into, and it was found that the merging of the C=O and C-OH 17 O resonances at high temperatures cannot be explained by the sole presence of one of these motions. Lastly, preliminary experiments were performed with a 2 H-17 O diplexer connected to the probe. Such configurations can allow, among others, 2 H and 17 O NMR spectra to be recorded at different temperatures without needing to tune or to change probe configurations. Overall, this work offers a few leads which could be of use in future studies of other materials using 17 O and 2 H NMR.

10.
J Am Chem Soc ; 142(50): 21068-21081, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33264006

RESUMEN

Fatty acids are ubiquitous in biological systems and widely used in materials science, including for the formulation of drugs and the surface-functionalization of nanoparticles. However, important questions regarding the structure and reactivity of these molecules are still to be elucidated, including their mode of binding to certain metal cations or materials surfaces. In this context, we have developed novel, efficient, user-friendly, and cost-effective synthetic protocols based on ball-milling, for the 17O and 18O isotopic labeling of two key fatty acids which are widely used in (nano)materials science, namely stearic and oleic acid. Labeled molecules were analyzed by 1H and 13C solution NMR, IR spectroscopy, and mass spectrometry (ESI-TOF and LC-MS), as well as 17O solid state NMR (for the 17O labeled species). In both cases, the labeling procedures were scaled-up to produce up to gram quantities of 17O- or 18O-enriched molecules in just half-a-day, with very good synthetic yields (all ≥84%) and enrichment levels (up to an average of 46% per carboxylic oxygen). The 17O-labeled oleic acid was then used for the synthesis of a metal soap (Zn-oleate) and the surface-functionalization of ZnO nanoparticles (NPs), which were characterized for the first time by high-resolution 17O NMR (at 14.1 and 35.2 T). This allowed very detailed insight into (i) the coordination mode of the oleate ligand in Zn-oleate to be achieved (including information on Zn···O distances) and (ii) the mode of attachment of oleic-acid at the surface of ZnO (including novel information on its photoreactivity upon UV-irradiation). Overall, this work demonstrates the high interest of these fatty acid-enrichment protocols for understanding the structure and reactivity of a variety of functional (nano)materials systems using high resolution analyses like 17O NMR.


Asunto(s)
Nanoestructuras/química , Ácido Oléico/química , Isótopos de Oxígeno/química , Ácidos Esteáricos/química , Marcaje Isotópico , Espectroscopía de Resonancia Magnética
11.
Inorg Chem ; 59(18): 13050-13066, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32167301

RESUMEN

While 17O NMR is increasingly being used for elucidating the structure and reactivity of complex molecular and materials systems, much effort is still required for it to become a routine analytical technique. One of the main difficulties for its development comes from the very low natural abundance of 17O (0.04%), which implies that isotopic labeling is generally needed prior to NMR analyses. However, 17O-enrichment protocols are often unattractive in terms of cost, safety, and/or practicality, even for compounds as simple as metal oxides. Here, we demonstrate how mechanochemistry can be used in a highly efficient way for the direct 17O isotopic labeling of a variety of s-, p-, and d-block oxides, which are of major interest for the preparation of functional ceramics and glasses: Li2O, CaO, Al2O3, SiO2, TiO2, and ZrO2. For each oxide, the enrichment step was performed under ambient conditions in less than 1 h and at low cost, which makes these synthetic approaches highly appealing in comparison to the existing literature. Using high-resolution solid-state 17O NMR and dynamic nuclear polarization, atomic-level insight into the enrichment process is achieved, especially for titania and alumina. Indeed, it was possible to demonstrate that enriched oxygen sites are present not only at the surface but also within the oxide particles. Moreover, information on the actual reactions occurring during the milling step could be obtained by 17O NMR, in terms of both their kinetics and the nature of the reactive species. Finally, it was demonstrated how high-resolution 17O NMR can be used for studying the reactivity at the interfaces between different oxide particles during ball-milling, especially in cases when X-ray diffraction techniques are uninformative. More generally, such investigations will be useful not only for producing 17O-enriched precursors efficiently but also for understanding better mechanisms of mechanochemical processes themselves.

12.
Solid State Nucl Magn Reson ; 107: 101663, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32325374

RESUMEN

Materials containing a calcium phosphate component have been the subject of much interest to NMR spectroscopists, especially in view of understanding the structure and properties of mineralized tissues like bone and teeth, and of developing synthetic biomaterials for bone regeneration. Here, we present a selection of recent developments in their structural characterization using advanced solid state NMR experiments, highlighting the level of insight which can now be accessed.


Asunto(s)
Productos Biológicos/química , Fosfatos de Calcio/química , Espectroscopía de Resonancia Magnética/métodos , Fosfatos de Calcio/síntesis química
15.
Molecules ; 23(10)2018 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-30274343

RESUMEN

A new layered hybrid polythiophene-silica material was obtained directly by hydrolysis and polycondensation (sol-gel) of a silylated-thiophene bifunctional precursor, and its subsequent oxidative polymerization by FeCl3. This precursor was judiciously designed to guarantee its self-assembly and the formation of a lamellar polymer-silica structure, exploiting the cooperative effect between the hydrogen bonding interactions, originating from the ureido groups and the π-stacking interactions between the thiophene units. The lamellar structure of the polythiophene-silica composite was confirmed by X-ray powder diffraction (XRD) and transmission electron microscopy (TEM) analyses. The solid-state nuclear magnetic resonance (NMR), UV-Vis, and photoluminescence spectra unambiguously indicate the incorporation of polythiophene into the silica matrix. Our work demonstrates that using a polymerizable silylated-thiophene precursor is an efficient approach towards the formation of nanostructured conjugated polymer-based hybrid materials.


Asunto(s)
Polimerizacion , Polímeros/química , Dióxido de Silicio/química , Tiofenos/química , Oxidación-Reducción
16.
Angew Chem Int Ed Engl ; 56(24): 6803-6807, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28455940

RESUMEN

17 O NMR spectroscopy has been the subject of vivid interest in recent years, because there is increasing evidence that it can provide unique insight into the structure and reactivity of many molecules and materials. However, due to the very poor natural abundance of oxygen-17, 17 O labeling is generally a prerequisite. This is a real obstacle for most research groups, because of the high costs and/or strong experimental constraints of the most frequently used 17 O-labeling schemes. Here, we show for the first time that mechanosynthesis offers unique opportunities for enriching in 17 O a variety of organic and inorganic precursors of synthetic interest. The protocols are fast, user-friendly, and low-cost, which makes them highly attractive for a broad research community, and their suitability for 17 O solid-state NMR applications is demonstrated.

17.
Chemistry ; 22(30): 10446-58, 2016 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-27344993

RESUMEN

The reactivity of benzimidazol-2-ylidenes with respect to gold nanoparticles (AuNPs) has been investigated using a combined experimental and computational approach. First, the grafting of benzimidazol-2-ylidenes bearing benzyl groups on the nitrogen atoms is described, and comparisons are made with structurally similar N-heterocyclic carbenes (NHCs) bearing other N-groups. Similar reactivity was observed for all NHCs, with 1) the erosion of the AuNPs under the effect of the NHC and 2) the formation of bis(NHC) gold complexes. DFT calculations were performed to investigate the modes of grafting of such ligands, to determine adsorption energies, and to rationalize the spectroscopic data. Two types of computational models were developed to describe the grafting onto large or small AuNPs, with either periodic or cluster-type DFT calculations. Calculations of NMR parameters were performed on some of these models, and discussed in light of the experimental data.

19.
Langmuir ; 31(47): 12839-44, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26566256

RESUMEN

Using aminoglycoside antibiotics as drug models, it was shown that electrostatic complexes between hydrophilic drugs and oppositely charged double-hydrophilic block copolymers can form ordered mesophases. This phase behavior was evidenced by using poly(acrylic acid)-block-poly(ethylene oxide) block copolymers in the presence of silica precursors, and this allowed preparing drug-loaded mesoporous silica directly from the drug-polymer complexes. The novel synthetic strategy of the hybrid materials is highly efficient, avoiding waste and multistep processes; it also ensures optimal drug loading and provides pH-dependence of the drug release from the materials.


Asunto(s)
Portadores de Fármacos/química , Polímeros/química , Dióxido de Silicio/química , Polietilenglicoles/química , Solubilidad , Electricidad Estática
20.
J Mater Sci Mater Med ; 26(8): 223, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26271216

RESUMEN

Nanocrystalline calcium phosphate apatites are biomimetic compounds analogous to bone mineral and are at the origin of the bioactivity of most biomaterials used as bone substitutes. Their unique surface reactivity originates from the presence of a hydrated layer containing labile ions (mostly divalent ones). So the setup of 3D biocompatible apatite-based bioceramics exhibiting a high reactivity requests the development of «low¼ temperature consolidation processes such as spark plasma sintering (SPS), in order to preserve the characteristics of the hydrated nanocrystals. However, mechanical performances may still need to be improved for such nanocrystalline apatite bioceramics, especially in view of load-bearing applications. The reinforcement by association with biopolymers represents an appealing approach, while preserving the advantageous biological properties of biomimetic apatites. Herein, we report the preparation of composites based on biomimetic apatite associated with various quantities of microcrystalline cellulose (MCC, 1-20 wt%), a natural fibrous polymer. The SPS-consolidated composites were analyzed from both physicochemical (X-ray diffraction, Fourier transform infrared, solid state NMR) and mechanical (Brazilian test) viewpoints. The preservation of the physicochemical characteristics of apatite and cellulose in the final material was observed. Mechanical properties of the composite materials were found to be directly related to the polymer/apatite ratios and a maximum crushing strength was reached for 10 wt% of MCC.


Asunto(s)
Apatitas/química , Materiales Biomiméticos/química , Sustitutos de Huesos/química , Apatitas/síntesis química , Fenómenos Biomecánicos , Materiales Biomiméticos/síntesis química , Sustitutos de Huesos/síntesis química , Cerámica/síntesis química , Cerámica/química , Humanos , Espectroscopía de Resonancia Magnética , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Nanocompuestos/química , Nanocompuestos/ultraestructura , Nanopartículas/química , Nanopartículas/ultraestructura , Gases em Plasma , Difracción de Polvo , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA